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HW1: Welcome to Pintos
Andrew Quinn

Due: Updated Wednesday April 10nth, 2024 at 11:59 PM.
Learning Objectives:
1. Get comfortable navigating the PintOS source code and using the container

toolchain for this course.
2. Setup, build, and execute PintOS.
3. Learn about how computer systems are loaded (i.e., how do we make the whole

thing start?).

getting started
We have created git repositories for each of you under the path https://git.ucsc.edu/
cse-134/spring24/section01/<yourcruzid>. If you do not see a git repository at that
location, please let us know immediately!. You will use this repo for all of the code and
design documents throughout this course. Your repository is a private fork of https://
git.ucsc.edu/aquinn1/pintos-reference.git. We’ll be updating this upstream repo to
distribute any changes that we have to make to base pintos. If that does not make any sense
to you—don’t worry, we’ll walk you through everything in due time.

setting up pintos
The first thing that we need to do is setup the PintOS toolchain. PintOS is designed for
32-bit 80x86 systems. Since you probably do not have a 32-bit x86 PC that you want to
dedicate to pintos development, we’ll be using simulators (QEMU and BOCHS) instead. To
make your life easier, we’ve put together a Dockerfile for you to build and install our pintos
simulators on your local machine. To start, make sure that you have docker installed on
your local machine. If you’re using a laptop with a graphical display, I suggest using Docker
Desktop. To check if you have docker installed correctly, try running the following, it should
give you sensible output:

docker --version

Once you have docker desktop setup, you should build the docker image and name it cse134.
There are two options.

First, you can build the container directly from the reference git repo. Note that some
students on macOS have seen permission issues when doing this:

docker build https://git.ucsc.edu/aquinn1/pintos-reference.git -t cse134

Second, you can first clone the reference git repo and then build from within that repo:
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git clone https://git.ucsc.edu/aquinn1/pintos-reference.git
cd pintos-reference
docker build . -t cse134

In either case, this command will take a while to complete. It took 493 seconds on my
macbook (8-core Apple M1 @ 1.2 GHz, 16GB RAM) and 604 seconds on my desktop (20-
core Intel i9–10900T CPU @ 1.90GHz, 32GB RAM).

Once this is built, download your git repository to somewhere on your local machine (not
in the docker container). Execute the following, replacing <your cruzid> with, well, your
cruzid:

git clone git@git.ucsc.edu/cse-134/spring24/section1/<your cruzid>

running the PintOS container
If you completed the setup, you are ready to run the container! Use following docker com-
mand from a terminal to startup your PintOS container �. Note: you should run this
command as a single line.

docker run -it --rm --name pintos --mount\
type=bind,source=<path_to_repo>,target=/home/cse134/pintos cse134 bash

Let’s elaborate on the interesting tid-bits:

1. docker run -it --rm --name pintos creates and runs a new container, named pintos,
that will be removed as soon as the current terminal ends. While you could run the
container without --rm or -it, we find these to be useful settings for development.

2. --mount type=bind,source=<path\_to\_repo>,target=/home/cse134/pintos mounts
your repository as the directory /home/cse134/pintos on the container. Any changes
that you make outside the container will be reflected inside of it and vice versa. This is
super useful for development, because you can edit the code in your favorite IDE/editor
on your local machine.

3. cse134 bash says that you want to use the docker image that you created under setup
above and run the command bash, which is just a standard shell.

You may later find that you want to attach another terminal to the container that you
just created. The following executes the command bash on the container named pintos:

docker exec -it pintos bash

running PintOS
Great! You’ve got the container running. Now, let’s try actually running PintOS inside of a
simulator. Navigate to /home/cse134/pintos/src/threads and build the system (specify-
ing -j tells make to use multiple cores):
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make -j

When you execute the make command, PintOS creates a new folder, /home/cse134/
pintos/threads/build, that contains the new image. Navigate into that folder and use
one of the helper scripts, pintos, to start the system with a particular workload. If you
have build everything correctly, you should see some encouraging output:

cd build
pintos -- run alarm-single

a brief introduction to PintOS
This section gives you a brief overview in the PintOS source code tree, the files created when
you build pintos, and the various parameters that you can pass to run the system. This
section is not totally necessary for this homework assignment, but its a good resource. My
description is based heavily off of the pintos documentation. I purposefully left some things
out (e.g., discussion of design documents), but you might find it worth looking through the
original documentation anyway.

PintOS source tree
The source code for PintOS is located under the src directory. You’ll be making all of
your changes to the system by modifying or creating files under the directory. Here’s brief
description of each of the subdirectories:

• “threads/”: Source code for the base kernel, which you will modify starting in project
1.

• “userprog/”: Source code for the user program loader, which you will modify starting
with project 2.

• “vm/”: An almost empty directory. You will implement virtual memory here in project
3.

• “filesys/”: Source code for a basic file system. You will use this file system starting
with project 2, but you will not modify it until project 4.

• “devices/”: Source code for I/O device interfacing: keyboard, timer, disk, etc. You
will modify the timer implementation in project 1. Otherwise you should have no need
to change this code.

• “lib/”: An implementation of a subset of the standard C library. The code in this
directory is compiled into both the PintOS kernel and, starting from project 2, user
programs that run under it. In both kernel code and user programs, headers in this
directory can be included using the #include< > notation. You should have little
need to modify this code.

• “lib/kernel/”: Parts of the C library that are included only in the PintOS kernel.
This also includes implementations of some data types that you are free to use in your
kernel code: bitmaps, doubly linked lists, and hash tables. In the kernel, headers in
this directory can be included using the #include< > notation.
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• “lib/user/”: Parts of the C library that are included only in PintOS user programs.
In user programs, headers in this directory can be included using the #include< >
notation.

• “tests/”: Tests for each project. You can modify this code if it helps you test your
submission, but we will replace it with the originals before we run the tests.

• “examples/”: Example user programs for use starting with project 2.
• “misc/” and “utils/”: These files may come in handy if you decide to try working

with PintOS on your own machine. Otherwise, you can ignore them.

PintOS build output
Your implementation for each of the PintOS projects will take place in a separate directory:
project 1 will be in “threads/”, project 2 in “userprog/”, project 3 in “vm/”, and project
4 in “filesys/”. PintOS provides a makefile for each of these directories, so that building
your implementation for a project involves navigating to the correct directory and executing
make. Executing make in any of these folders creates a subdirectories, build that includes
the following:

• “Makefile” A copy of “pintos/src/Makefile.build” describing how to build the
kernel.

• “kernel.o” An object file for the entire kernel. This is the result of linking object files
compiled from each individual kernel source file into a single object file. It contains
debug information, so you can run GDB (see section E.5 GDB) or backtrace (see
section E.4 Backtraces) on it.

• “kernel.bin” Memory image of the kernel, that is, the exact bytes loaded into memory
to run the PintOS kernel. This is just “kernel.o” with debug information stripped
out, which saves a lot of space, which in turn keeps the kernel from bumping up against
a 512 KiB size limit imposed by the kernel loader’s design.

• “loader.bin” Memory image for the kernel loader, a small chunk of code written in
assembly language that reads the kernel from disk into memory and starts it up. It is
exactly 512 bytes long, a size fixed by the PC BIOS.

Additionally, make creates subdirectories in build with object files (“.o”) and depen-
dency files (“.d”). The dependency files tell make which source files need to be recompiled
when other source or header files are changed.

running PintOS
PintOS provides a program, pintos, that makes it easy to run PintOS in a simulator; we
used this command earlier to test that you installed and built the system correctly. The
command for using the script is

pintos option... -- argument...

where option... refers to options that configure the simulator and argument... refers to
arguments that you pass to the kernel. You will usually pass arguments as run <test> to
run the program test after PintOS loads. Options can select a simulator to use: the default
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is QEMU, but you can also run with the Bochs simulator by specifying ”–bochs”. You can
run the simulator with a debugger (see below). You can set the amount of memory to give
the VM. The Pintos kernel has a whole host of other commands and options which you can
see by using -h, as in: pintos -h.

Debugging PintOS

debugging nondeterminism. Contending with nondeterminism is very challenging, as
I am sure you recall from CSE 130. The especially challenging bugs are so called heisen-
bugs—nondeterministic bugs whose behavior goes away when you add print statements to
your code. In other words: bugs whose behavior changes due to observation.

To make your life easier, PintOS has extended the Bochs simulator with a reproducibility
feature. To use this feature, use the Bochs simulator through the pintos program, specify
the same command-line argument, the same disks, and do not hit any keys on the keyboard
(because you could not be sure to hit them at exactly the same point each time) during
the runs. Bochs will ensure that timer interrupts come at perfectly reproducible points, and
therefore so will thread switches.

using gdb. In addition to using Bochs for debugging, PintOS also provides tooling that
you can use to run gdb on it. You will probably find this feature useful for this homework
assignment. See this link for a detailed rundown of its use (there are a number of extra
commands that PintOS provides). As a short tutorial, you can execute the following:

pintos --gdb -- run mytest

Then, create a second terminal window:

docker exec -it pintos bash

Navigate to the current build directory (e.g., pintos/src/threads/build) and execute the
following:

pintos-gdb kernel.o

Finally, once the gdb starts, execute the following to attach to your running PintOS in-
stanced:

debugpintos

Testing PintOS

While reproducibility helps with debugging, it is detrimental for testing. The issue is that
running the same test several times doesn’t give you any greater confidence in your code’s
correctness than does running it only once. How can you figure out if your PintOS changes
actually handle nondeterminstic inputs?

To make this possible, PintOS adds a feature, called jitter, to Bochs. Jitter makes timer
interrupts predictably random: they arrive at random intervals, but at deterministic intervals
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based upon a seed. To use jitter, invoke pintos with the option -j seed. For the highest
degree of confidence you should test your code with all possible seeds, or, at least a bunch
of different ones.

However, the issue with running Bochs in reproducible mode is that timings are not
realistic. So, a “one-second” delay may be much shorter or longer than one second. To
get realistic timings, you can invoke pintos with “realistic bochs” by specifying the options
--bochs -r 1. Alternatively, QEMU, the default simulator used by the pintos script,
supports realistic timings and is much faster than Bochs.

background on bootstrapping
Much of this homework is about how systems load their operating systems into memory on
startup, called bootloading. The discussion here is focused on how this works on the 80x86
architecture, but the approach has changed surprisingly little on more modern hardware.
There are two helper programs that are responsible for making this happen: the BIOS
(Basic Input/Output System) and bootloader. Hardware ensures that the BIOS has control
of the machine when it is powered on. The BIOS performs basic initialization, e.g., checking
memory available and activating video card, and then tries to find a bootloader on peripheral
devices such as floppy disks, hard disks, CD-ROMs, etc. To do this, the BIOS looks at the
first sector of attached devices, where a sector is a small (typically 512 bytes) chunk of
a device, to see if it contains a boot sector. If it finds a boot sector, the BIOS loads the
sector into a specific physical address (on the 80x86 this happens to be at location 0x7c00
to 0x7dfff) and then passes control of the machine to the bootloader. The bootloader is
then responsible for loading the operating system.

The helpers used for bootstrapping are required to use very few system resources. They
must take up little space (e.g., bootloaders are typically limited to hundreds of bytes) and
cannot use standard libraries like printf or read. Instead, these helpers must interact with
hardware through their complex hardware programming routines using interrupts. To limit
code bloat, most of these helpers are written in assembly.

To illustrate these challenges, we will discuss the physical memory layout of typical
machine. Early 16-bit systems, such as Intel’s 8088 processor, were only capable of addressing
1MB of physical memory. Thus, the physical address space started at 0x00000000 and ended
at 0x000FFFFF. These systems reserved the 384KB area from 0x000A0000 to 0x000FFFFF
for special hardware (e.g., the video display buffers) and the BIOS ROM, which occupied
the 64KB region from 0x000F0000 to 0x000FFFFF.

To ensure backwards compatibility, architectures retained these reservations even after
address spaces expanded beyond 1MB. Thus, the 80x86, and most modern systems, have a
“hole” in their physical memory from 0x000A0000 to 0x00100000 reserved for the BIOS and
16-bit devices. This divides the physical address space of a system into “low” or “conven-
tional” memory (the first 640KB) and “extended” memory (everything else). Additionally,
the BIOS often reserves memory at the top of the 32-bit address space 32-bit devices. We
show this layout in ??.

1Note that Bochs cannot simultaneously support realistic timings and reproducibility
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Figure 1: The memory layout of an 80x86 machine.

the bootloader
Bootloaders for the 80x86 run in real-addressing or “real” mode, in which the system uses
segment registers to compute memory address according to the formula: address= 16 *
segment + offset. There are different segments and segment registers for different memory
regions. For example, instructions reside in the code segment, whose start is specified by
the register CS. So, when the BIOS passes control to the bootloader at address 0x7c000,
it does so by setting CS to 0 and executing a jmp instruction to 0x7c00. The physical
address calculation is then computed as 16 ∗ 0 + 0x7c00 = 0x7c00. Other segments include
a stack segment (register SS) and two data segments (registers DS and ES). Each segments
are 64KiB in size; since bootloaders often have to load kernels that are larger than 64KiB,
they must utilize the segment registers carefully.

The pintos bootloader makes a number of simplifications: it only supports small kernels,
always loads the kernel starting at address 0x20000, only supports booting off of hard-drives,
etc.

After loading the kernel, the bootloader transfers control to it. In PintOS, the entry point
is start(), in file src/threads/start.S. The entry point is not at a predictable location in
the kernel image, but the kernel’s ELF header contains a pointer to it. The loader extracts
the pointer and jumps to the location it points to.
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the kernel
The kernel’s entry point takes a number of steps to finalize the operating system’s startup.
It first obtains the machine’s memory size from the BIOS. PintOS’s BIOS uses a simple
function that detects at most 64 MB of RAM, so that is the practical limitation of PintOS.
Then, the kernel startup code sets the A20 line, that is, the CPU’s address line numbered 20.
For historical reasons, PCs boot with this address line fixed at 0, which means that attempts
to access memory beyond the first 1 MB (2 raised to the 20th power) will fail. Next, the
kernel sets up basic page tables and turns on protected mode—taking the system out of
real mode and into the addressing expected on more modern machines. (details omitted for
now). Finally, PintOS calls into the C code of the Pintos kernel.

command line arguments
Pintos manages command line arguments in an inelegant, but effect manner. The pintos
program that you use to start the system inserts the command-line arguments into a copy
of the boot loader each time it starts the kernel. Then, the kernel reads the arguments from
the boot loader’s memory when after it starts executing.

your homework questions
Finally, we’ve reached the homework questions! Don’t worry, it won’t usually take this
long. For this assignment, you’ll practice the turn-in method that we will use for projects
throughout the quarter. Namely, put the answers to the homework questions in a file named
docs/hw1.md in your repository. Make sure to include the question and/or question number
for each of your answers. When you are finished, commit your answers to your repository
and make sure to push your the changes. Then, navigate to the canvas assignment and enter
the 40-character hash as your submission.

You will find that gdb is required to answer most of the homework questions. You will
also likely find it useful to read the bootloader’s code from src/threads/loader.S (and its
disassembly at src/threads/build/loader.asm). The questions are as follows:

1. What is the physical address of the first instruction that is executed by the BIOS? hint:
it is the address of $eip when you start PintOS.

2. How does the bootloader read disk sectors? In particular, what BIOS interrupt does it
use?

3. How does the bootloader decide if it successfully finds the PintOS kernel?
4. What happens if the bootloader is unsuccessful in finding the PintOS kernel?
5. How exactly does the bootloader transfer control to PintOS?
6. Tracing the behavior of the palloc_get_page() function from PintOS. Set a breakpoint

on this function and identify the following values the first time that it is called:

(a) What is the call stack when the function is called?
(b) What is the return value of the function, in hexadecimal format, on its first invoca-

tion?
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7. Tracing the behavior of the palloc_get_page() function from PintOS. Set a breakpoint
on this function and identify the following values the third time that it is called:

(a) What is the call stack when the function invocation?
(b) What is the return value of the function, in hexadecimal format, on its first invoca-

tion?
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