
© Andrew Quinn

Advanced
Concurrency/Synchronization

Andrew Quinn

Learning Objectives:

1. How do we make synchronization
scale?

2. What tradeoffs do we face when per-
forming these optimizations?

Announcements:

1. HW1 due tonight!

accelerating too much milk
We concluded Too Much Milk with the following implementation:

acquire(lock);
if (no_milk) {

buy_milk();
}
release(lock);

In class, we mentioned that this approach has a major performance issue. You and your
housemate will hold the lock while buying milk, which ensures safety. However, buying milk
is a slow operation, so whoever is not buying milk will spend a lot of time waiting. We call
this lock contention: it refers to the scenario when one process/thread waits while attempting
to acquire a lock currently held by another process/thread.

In general, it is a good idea to limit lock contention to improve performance. For too
much milk, we want to do this by not holding the lock while calling buy_milk(). We can do
this by revisiting the “note” idea from last class—use a note to indicate whether you went
to the store, but use a lock to provide critical sections around writing the note. Here’s a
possible solution:

CSE 134: Embedded Operating Systems 1



© Andrew Quinn

to_buy = False;
acquire(lock);
if (no_note && no_milk) {

to_buy = True;
leave_note();

}
release(lock);
if (to_buy)

buy_milk();

acquire(lock);
if (to_buy)

remove_note();
release(lock);

Since checking and leaving a note is much faster than buying milk, this solution will drasti-
cally reduce lock contention.

locking granularity
To introduce the next section, let’s look at the concurrent linked list described in your book:

CSE 134: Embedded Operating Systems 2



© Andrew Quinn

typedef struct __node_t {
int key;
struct __node_t *next;

} node_t;

typedef struct __list_t {
node_t *head;
lock l;

} list_t;

void List_Init(list_t *L) {
L->head = NULL;

}

bool List_Insert(list_t *L, int key) {
node_t *new = malloc(sizeof(node_t));
if (new == NULL) {

return false;
}
new->key = key;

acquire(L->l);
new->next = L->head;
L->head = new;
release(L->l);

return true;
}

bool List_Lookup(list_t *L, int key) {
bool found = False;

acquire(L->l);
node_t *curr = L->head;
while (curr) {

if (curr->key == key) {
rv = True
break;

}
curr = curr->next;

}
release(L->l);

return found;
}

CSE 134: Embedded Operating Systems 3



© Andrew Quinn

This solution provides a safe concurrent linked-list, but it will have a lot of lock con-
tention: there can only be at most one thread looking up or inserting items in the list at
a time. The reason for this limitation is that this approach uses coarse-grained locking—it
uses a single lock for the entire list. We could reduce lock contention by implementing fine-
grained locking, where we use a lock per node. We could update the node struct definitions
to:

typedef struct __node_t {
int key;
struct __node_t *next;
lock l;

} node_t;

Can we change the insert code to the following:

bool List_Insert(list_t *L, int key) {
node_t *new = malloc(sizeof(node_t));
if (new == NULL) {

return false;
}

acquire(L->head->l);
new->next = L->head;
L->head = new;
release(new->next->l);

return true;
}

Nope, although the reason is quite subtle. The problem is that updating the head of the
list means that the lock that is intended to protect the head of the list changes during the
critical section. The change means that any thread waiting to acquire the head’s lock may
have actually hold an intermediate node’s lock by the time acquire actually returns!

OK, so we won’t be able to reduce lock contention on insert, at least not for a singly-
linked list. But, we should be able to use our per-node lock to reduce lock contention when
doing a lookup operation. To make this work we have to use a technique called hand-over-
hand locking 1. The idea is that, while iterating through a list, you acquire the next lock
before releasing the current one. This ensures that the code does not have any violations
related to the next pointers:

1We actually do not need this technique since we do not have a delete implementation. But, its a good
example of the technique nonetheless

CSE 134: Embedded Operating Systems 4



© Andrew Quinn

bool List_lookup(list_t *L, int key) {
bool found = False;

acquire(L->l);

node_t *curr = L->head;
lock *prevl = L->l;

while (curr) {

// hand-over-hand locking here:
acquire(curr->l);
release(*prevl);
prevl = &curr->l;

if (curr->key == key) {
found = True
break;

}
curr = curr->next;

}

release(prevl);
return found;

}

Would this design work for a doubly-linked list with a reverse iterator? Why or why not?

conclusion
Before we wrap up, we should point out the tradeoffs here: there is significantly less lock
contention when performing a lookup. But, how many more operations need to occur per
lookup? You have an addition N calls to both acquire and release! Is the additional
scalability worth all of that extra overhead?

For a linked list, almost certainly not. The list needs to be huge and you need to have
an extreme number of threads. Even then, it is rarely worth it.

CSE 134: Embedded Operating Systems 5


