
© Andrew Quinn

The Processes Abstraction
Andrew Quinn

Learning Objectives:

1. What is a process?
2. How does an operating system use

limited direct execution so that pro-
cesses are safe and efficient?

Announcements:

1. HW2 due tonight!

Many of you will have heard of the idea of a process before—it’s a word that I’ve certainly
used frequently during lectures in this class. You’re probably used to thinking of a process
informally as a running program—an instantiation of a program that actually performs some
computation. This intuition is spot on.

However, things get a bit more complex from an operating system perspective. Each
process has the illusion that it has access to its own machine. Among other things, this
includes:

1. Each process thinks that it has its own CPU, with its own registers and CPU context.
That is, on an x86 machine, each process that runs will have its own unique value for
eax.

2. Each process thinks that it has its own memory. That is, each process that runs can have
unique values assigned to the same memory address (e.g., *(0x1000) can be 10 in process
A but 12 in process B).

3. Each process thinks that it has its own open files. That is, even if two processes open the
same file, they each have their own file cursors indicating their current file offset.

An operating system makes this possible through virtualization. It has to keep track of
all of the state of all of the processes to make the system run smoothly and provide this
illusion.

the os perspective
Let’s get into the operating system’s perspective of processes in a system, starting by de-
scribing the states that a process can be in:

1. Running: The process is currently running on a CPU.
2. Ready: The process is not currently running, but it is schedulable by the OS (it would

have things to do).
3. Blocked: The process is waiting on some other event, such as I/O or a synchronization

primitive.
4. Finished: Called a zombie process, the process has finished executing, but no other

process has observed its exit code (the term used in the literature is that no other process
has reaped it).

CSE 134: Embedded Operating Systems 1



© Andrew Quinn

Ready Running

Blocked

Finished

scheduled

descheduled

Blocking Operation
Block finished

exit()killed

Figure 1: The possible process states.

Figure 1 describes these states pictorially. We see that the operating system can move a
process between running and ready, whereas a process moves itself to blocked by executing a
blocking operation. Your book has an example of how processes move through these states,
which we will discuss (Figure 4.4 in OSTEP).

limited direct execution
We saw that the operating system provides the illusion of multiple hardware resources for
each of the processes in the system. To do this, the operating system needs to be a resource
manager of the system. One idea that has been proposed would be for the operating system
to emulate the actions of processes, where every instruction that a process executes would
pass through the operating system.

This would work, but emulation is very slow! So, there seems to be a tradeoff: how can
operating systems manage resources while also retaining efficiency?

The answer is limited direct execution. With limited direct execution, the operating
system allows a process to execute directly on the hardware, without any intervention by
the system. There are two problems: (1) How can the OS ensure that the process does access
resources in an unsafe manner? and (2) How can the OS gain control of the hardware to
perform its actions? We’ll walk through both of these ideas in more detail:

CSE 134: Embedded Operating Systems 2



© Andrew Quinn

safety through restricted operations
Operating systems ensure safety by restricting the operations that a process can perform on
its own. Modern hardware introduces modes: user mode and kernel model. The hardware
only allows certain operations to be executed while in kernel mode. Our systems then execute
processes in user mode, preventing the processes from doing bad stuff.

But, what if a process has a valid reason for using a privileged instruction? For example,
what if a process wants to read a file! To make this possible, operating systems provide
system calls, usually a few hundred of them. You may think that system calls look like
normal procedure calls, but that is just because you have probably always used the wrappers
for system calls provided by libc.

Instead, system calls are implemented using special trap instructions. These instructions
simultaneously jump into a specific function in the kernel and change the mode of the
hardware into kernel mode. When finished with the system call, the operating system can
execute a return-from-trap instruction to reverse the process. The exact semantics of these
instructions (e.g., where the arguments to the systemcall go, where to place the context of
the process when the trap occurs, etc.) vary across architectures, but the high-level behavior
is the same.

One key question remains, though: how does the system know where in the kernel to
jump? Surly the user process should not be able to directly specify an address. Instead,
on boot, the operating system populates an interrupt table, which specifies which functions
to execute on each of the various interrupts that can happen. These functions are called
interrupt handlers.

One note: your book uses the word “trap” to refer to interrupts triggered by a pro-
gram. Other sources call these “software interrupts” or “internal interrupts”. The book uses
the word “interrupt” to refer to interrupts triggered by hardware, some sources call these
“hardware interrupts” or “external interrupts”. I will try to be consistent with your book.

There is not a separate interrupt handler for every possible systemcall, as there are not
enough entries in the interrupt table for such a design. So, processes instead pass a systemcall
number when executing a trap to specify which system call. We’ll walk through Figure 6.2
in class as an example of executing such a systemcall; you will be asked to do this in your
second project/assignment.

control through context switches
Let’s say that the operating system wants to switch from one process to another; how?
Limited direct execution makes this difficult—the operating system is, by definition, not
executing. We could try assume that all processes will eventually execute system calls.
This is called cooperative scheduling; it has been used in many systems, but can easily be
exploited by bad actors.

So, instead an operating system would like to have preemption—the ability to force a
process off of the CPU. This is also called non-cooperative scheduling. The approach taken
by most operating systems (including PintOS) is to have an external interrupt called a timer
interrupt. The process of using the timer interrupt is almost identical to the process of
executing a trap instruction. The key difference is that the operating system may switch to

CSE 134: Embedded Operating Systems 3



© Andrew Quinn

a different process, called a context switch, while processing the timer interrupt.
This approach allows the system to perform time multiplexing, in which it schedules

different processes on its hardware resources. We’ll talk more about context switching and
scheduling (basically this topic) in the next class.

CSE 134: Embedded Operating Systems 4


	Limited Direct Execution

