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Intro to Virtual Memory
Andrew Quinn

Learning Objectives:

1. What goals do we have for virtual
memory?

2. How did historical virtual memory
designs fall short?

Announcements:

1. Project 2 is out!

why virtualize memory?
We have seen how an operating system gives each application running on a system “limited
direct execution” (LDE). One of the many goals of LDE is to provide an application with
the illusion that it is the only process executing on the machine; a BIG part of this illusion
is that each process on the system has its own address space.

We often draw fig. 1a as our depiction of an application’s address space. The address
space consists of program code, global variables, a stack, and a heap. We’ve simplified the
drawing a bit here and made a few assumptions, but it’s the picture that we’ll go with for
this unit.

But, as we know from this class, the operating system actually has memory that looks
like fig. 1b. Virtual memory is what allows the application to “see” fig. 1a, even though the
actual system has fig. 1b.

Virtual memory involves both systems software and computer architecture—it is one of
the earliest examples of hardware-software co-design in computer systems. This class will
focus on the operating system’s role in virtual memory, but we will necessarily talk some
about how the hardware/architecture plays a role in these systems. You will probably have
heard some of this material before in prior computer architecture classes. That’s OK, virtual
memory is one of those very important topics, so it’s good that you’ll get more than one
chance to learn it.

Let’s talk about the goals of a virtual memory system:

1. Protection: Virtual memory aims to ensure that each system and the operating system
itself have independent memories or address spaces. This protection may not only apply
across applications, but also within x3an application. So called “fine-grained” protections
would encompas features such as enforcing protections on parts of a program’s memory,
such as ensuring that code is not writable, or that the stack is not executable.

2. Efficiency: Virtual memory aims to provide virtual memory with as little runtime over-
head as possible. This is the overall aim of LDE. Spacial efficiency is also important for
virtual memory: the system aims to provide virtual memory using as little extra memory
space as possible.

3. Transparency: Virtual memory aims for all userspace programs to be unaware that vir-
tualization takes place. The virtual memory systems in the operating system do not rely
upon compilers, loaders, or other “untrusted” software for this feature.
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(b) The memory layout of an 80x86 machine.

4. Expansiveness: Virtual memory aims to allow systems to address more memory than
the system actually has. In the early days, expansiveness involved storing some process
memory on disk, which is most of what we’ll talk about in class.

early designs
One of the earliest virtual memory designs actually copied process’s memory to-and-from
disk on every context switch! This design protected applications and was transparent. But,
it is not efficient nor expansive. So…

base-and-bounds
Base and bounds uses a linear shift of a process’s memory. Kernel virtual memory in Pin-
tOS actually acts very similar to base-and-bounds, as does memory in certain programming
languages (e.g., WebAssembly’s “linear memory” is essentially a base-and-bounds implemen-
tation in userspace). Here’s how it works:

• Applications get a contiguous virtual memory space that starts at 0 and ends at an
application specifiable bounds. For example, in fig. 1a, the bounds would be 16KiB.
Note: the virtual memory space always starts at 0 in base-and-bounds systems.

• The system assigns each process a contiguous region in physical memory starting at
the process’s base.

• To dereference a virtual memory address, a, the system then first checks if a is less
than bounds, and then calculates the physical address as a + base.
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In addition to the hardware for LDE, the hardware/architecture in base-and-bounds
provides…

1. Registers that store an application’s base-and-bounds. This is part of a hardware unit
called an Memory management Unit (MMU).

2. Privileged instructions to modify the base-and-bounds.
3. Ability to raise exceptions when a bad access occurs (e.g., when a virtual address is larger

than bounds).
4. Ability to translate memory addresses during execution.

And, the operating system provides…

1. Ability to update base-and-bounds on context switch.
2. Ability to handle translation exceptions.
3. Memory management:

1. Ability to allocate memory to a new process.
2. Ability to free memory on process termination.

People complain about base-and-bounds frequently, but it actually does some things very
well:

• Fully transparent.
• Achieves protection.
• Efficient runtime.
• Very simple OS and architecture design.
But, what does base-and-bounds not do well?
• Not expansive.
• No fine-grained protection.
• User’s AS must be sized for the maximum possible use (How would you implement

virtual memory growth?).
• Leads to fragmentation:

– Internal Fragmentation: space allocated in a unit is not all used.
– External Fragmentation: space between allocation units cannot all be used.

See course lecture video for an example.

segmentation
So, base-and-bounds seems bad. What if we generalize it slightly? Rather than having a
single base-and-bounds region for the whole address space, let’s instead have a group of base-
and-bounds regions for the process. We’ll call each of them a segment. The exact number of
segments depends on the particular hardware, but let’s simplify by assuming that we have
a code segment, stack segment, and data segment. Here’s how it works:

• Applications get a set of segments (e.g., code, data, and stack). Each segment is a
contiguous virtual memory space that starts at 0 and ends at an application specifiable
segment bound.
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• The system assigns each segment to a contiguous region in physical memory starting
at the segment’s base.

• To dereference a virtual memory address, a, the system then first checks if a is less than
its segment’s bounds, and then calculates the physical address as a + segment_base.
There are three main ways to track the segment for each memory address:

– Implicitly as a part of each instruction.
– Using special registers in each memory access.
– Encode the segment into the high-order bits of the address (e.g., the first two

bits).
• System can provide per-segment memory protections.
• System can provide per-segment growth.
• System can even provide segment sharing across applications.
In addition to the hardware for LDE, the hardware/architecture for segmentation needs…

1. Registers that store base-and-bounds for each segment (MMU).
2. Privileged instructions to modify segment registers.
3. Ability to raise exceptions when a bad access occurs—but, now this needs to check for

specific permissions (read or write).
4. Ability to translate memory addresses during execution.

And, the operating system provides…

1. Ability to update segments on context switch.
2. Ability to handle translation exceptions.
3. Free memory management:

1. Ability to allocate memory to a new process.
2. Ability to free memory on process termination.
3. Ability to grow segments

Segmentation gets a lot of things “right”:
• Fully transparent.
• Achieves protection.
• Achieves fine-grained protection.
• Efficient runtime.
• Simple OS and architecture design.
• Solves internal fragmentation.
But, segmentation still suffers from external fragmentation. Indeed, the ability to grow

a segment surely will make external fragmentation worse that in base-and-bounds. Addi-
tionally, we have not described any mechanism to provide expansiveness. It seems possible
to do it, but also would be very complex and challenging to build.

We’ll talk about paging and how it solves these challenges next. One note, though:
fragmentation is a fundamental challenge that all allocators face. So, while paging will
basically eliminate external fragmentation: (1) we’ll see internal fragmentation arise and (2)
library-level allocators (e.g., malloc) will face the same problems that we’ve discussed.
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