
© Andrew Quinn

Project 2
Andrew Quinn

Due: Monday May 6th, 2024 at 11:59 PM.
Learning Objectives:
1. Learn how system calls work from an PintOS perspective.
2. Practice “defensive programming”.
3. Practice explaining and justifying computer system designs.

overview
The goal of this project is to build support for user programs in PintOS. In the last assign-
ment, all of the code that you used (e.g., all of the alarm tests) ran as part of the operating
system. In this assignment, you will instead support userspace processes. Your job will be
to implement the core features required to make this possible.

Your system will need to support more than one process at a time, but, each process will
only have a single thread. User processes in your PintOS will execute with “limited direct
execution”: the illusion that they have access to the entire machine. Your PintOS will need
to provide the illusion. The provided code supports loading and running user programs to
help get you started. It does not support system calls; adding that support is the main goal
of this assignment.

You will be working out of the src/userprog directory, meaning that you should build
your system from there. However, in this assignment, you will use code from almost every
directory in PintOS. It will seem unnervingly complex at first; this is all part of learning.

requirements
Your submission should include a design document, the ability to parse command-line ar-
guments for a user program, the ability to execute system calls made by a user program,
the ability to produce a process termination message, and the ability to validate a user’s
memory input.

This project will be completed in partnerships. However, you will each submit individu-
ally on canvas, and will each need to have your group’s source code in your individual CSE
134 repository. We suggest that you and your partner choose one of your repositories as “the
working repository” (the course staff will ensure that partners have access to each other’s
CSE134 repositories). You and your partner would do your project development using this
repo, pushing at regular intervals as you make progress. Once you are finished, you would
push your local repository to the other person’s CSE 134 repository. The easiest way to do
this is to setup multiple remotes in git.

One note: we expect to see code commits produced by each partner. It is probably a
good idea for you and your partner to “pair program” the assignments. Nonetheless, we will
ask questions if the code commits indicate that one person did all of the work.

CSE 134: Embedded Operating Systems 1

© Andrew Quinn

design document
Your submission should include a design document that describes key design decisions that
you made in your system. The document should be located at docs/p02.md. Your design
document should include a separate section for each of the four other tasks (argument pars-
ing, system calls, process termination message, and user memory). For each section, you
should outline (1) any data structures that you created or extended in your design; (2) any
algorithms that you created for your design; (3) any synchronization used in your design;
and (4) a justification of your design (Why is it correct? Why is it fast? etc.). You should
aim to have enough detail in your design that a fellow 134 student would be capable of
re-implementing your system by following it. Note: if your design does not require any of
these features (e.g., you do not have data structures for the process termination message),
specify “N/A”.

command line parsing
From this assignment onwards, PintOS will call process_execute() with the arguments
passed to it on the command line (see run_task() from src/threads/init.c). The argu-
ment to process_execute() is a c-string including all of arguments to the program. Your
first task is to extend this functionality so that process_execute() divides its input into
words at spaces. The first word is the program name, the second word is the first argu-
ment, and so on. Thus process_execute("grep foo bar") should run grep passing two
arguments foo and bar.

To support command line arguments, your PintOS will need to change the way that
it sets up a user process’s stack. Peruse through the code in src/userprog/process.c
and figure out how it currently sets up the stack; you’ll want to extend that. Section 3.5,
especially the example in Section 3.5.1 at this webpage will probably prove a useful resource
for what a stack should look like.

A few other notes:

1. Your PintOS should treat multiple spaces as equivalent to a single space, so that means
that process_execute("grep foo bar") is the same as process_execute("grep foo
bar")

2. Your PintOS should impose a limit on the length of the command line arguments. One
reasonable one is to limit arguments to those that fit in a single page (4 kB).

3. Your PintOS can parse argument strings however you would like. There’s a few functions
in lib/string.h that you might find helpful.

system calls
Implement the system call handler in userprog/syscall.c. The current implementation
terminates processes on every system call—yours should instead retrieve the system call
number and any system call arguments from the user process and carry out the appropriate
actions. After this assignment, and forevermore, your PintOS should be bulletproof. Nothing

CSE 134: Embedded Operating Systems 2

https://web.stanford.edu/~ouster/cgi-bin/cs140-spring20/pintos/pintos_3.html#SEC41

© Andrew Quinn

that a user program can do should ever cause it to crash, panic, fail an assertion, or otherwise
malfunction. So, program defensively.

The system calls can be broadly split into those pertaining to processes and those per-
taining to files. PintOS provides a basic file system implementation in src/filesys for
you to use for the file-based system calls. While you can edit any file in PintOS for this
assignment, we suggest that you do not modify the code in src/filesys.

Your system call implementation will need to be defensive with user process provided
inputs. It should not assume that a user provided the right number of arguments, that the
memory addresses they provide are valid, etc. Your implementation should use your User
Memory solution to make this work. If a system call is passed an invalid argument, your
PintOS should either return an error value (for system calls that return values), or terminate
the offending process. The provided tests check for each of these cases, so you’ll know that
your PintOS does the right thing if it passes all of the tests.

Your system call implementation will need to be synchronized so that any number of user
processes can execute a system call at once. The current implementation in src/filesys is
not currently thread safe, so you should treat all functions from that directory as a global
critical section. Note1 there are calls to the file system from within process_execute().

In the 80x86 architecture, the int is the mechanism for invoking a system call; in PintOS,
user programs invoke int $0x30. PintOS’s system call calling convention is to push all
arguments onto the stack before invoking the interrupt, in exactly the same manner as the
80x86’s function calling conventions. PintOS already provides userspace implementations
in lib/usr/syscall.c, so you will not need to worry about implementing anything in
userspace.

However, you will need to implement the OS code to support system calls. When the
system call handler, syscall_handler() from sys/userprog/syscall.c, gets control, the
system call number will be in the 32-bit word at the caller’s stack pointer, the first argument
will be in the 32-bit word at the next higher address, and so on. Your implementation
can access the caller’s stack pointer from within syscall_handler() as the esp member
of f, the struct intr_frame that is passed to the function. The 80x86 convention for
function return values is to place them in eax. Your syscall_handler() can provide such
functionality by modifying the eax member of f.

You should implement the following system calls in your PintOS. Note that there are
other system calls that the PintOS userspace supports; no need to implement them. The
System call numbers for each system call are defined in lib/syscall-nr.h, your PintOS
will probably need to reference them:

void halt (void)

Terminate PintOS by calling shutdown_power_off() from "devices/shutdown.h".

void exit (int status)

Terminates the current user program. If the process’s parent waits for the child(see
below), then the PintOS should return the status as it was passed to this function. Con-
ventionally, a status of 0 indicates success and nonzero values indicate errors.

1this one tricked your professor

CSE 134: Embedded Operating Systems 3

© Andrew Quinn

pid_t exec (const char *cmd_line)

Runs the executable whose arguments are given in cmd_line. Returns the new process’s
program id (pid), or, -1 if there is an error loading the child’s executable. Note: this design
means that the exec cannot return to the parent process until it determines whether the
child process successfully loaded its executable.

int wait (pid_t pid)

Waits for a child process pid and retrieves the child’s exit status. If child process pointed
to by pid is still alive, wait should block until the child terminates. After the child process
terminates, wait should return the status that the child passed to exit. Note that a parent
process can call wait on a child processes that has already terminated; your PintOS should
still ensure that the parent retrieves the correct status. wait(pid) should return -1 in 3
cases:

1. pid does not refer to a direct child of the calling process, i.e., a process that was created
by calling process due to a call to exec. In PintOS, children are not inherited: if A
spawns child B and B spawns child process C, then A cannot wait for C, even if B is
dead. Similarly, orphaned processes (processes whose parents are terminated) are not
assigned to a new parent if their parent process exits before they do.

2. The process that calls wait has already called wait on pid. That is, a process may wait
for any given child at most once.

3. The child process referenced by pid was terminated by the kernel (e.g., due to an excep-
tion).

All of a process’s resources, including its struct thread, must be freed whether its parent
ever waits for it or not, and regardless of whether the child exits before or after its parent. You
must ensure that PintOS does not terminate until the initial process exits. The supplied
PintOS code tries to do this by calling process_wait() (in userprog/process.c) from
main() (in threads/init.c). We suggest that you implement process_wait() according
to the comment at the top of the function and then implement the wait system call in terms
of process_wait().

bool create (const char *file, unsigned initial_size)

Creates a new file, called file, that initially has initial_size bytes in size. The system
call should return true if successful and false otherwise. Creating a new file does not open
it: opening the new file is a separate operation requiring the process call the system call
open.

bool remove (const char *file)

Deletes the file, file. Returns true if successful and false otherwise. A file may be
removed regardless of whether it is open or closed, and removing an open file does not close
it.

CSE 134: Embedded Operating Systems 4

© Andrew Quinn

int open (const char *file)

Opens the file, file. Returns a non-negative integer handle, a file descriptor (fd), or -1
if the file could not be opened. In PintOS, the file descriptors numbered 0 and 1 are reserved
for the console: fd 0 (STDIN_FILENO) is standard input, fd 1 (STDOUT_FILENO) is standard
output (there is no STDERR_FILENO in PintOS). The open system call should never return
either of these file descriptors, which are valid as system call arguments only as explicitly
described below.

Each process has an independent set of file descriptors. File descriptors are not inherited
by child processes. When a single file is opened more than once, whether by a single process
or different processes, each open returns a new file descriptor. Different file descriptors for
a single file are closed independently in separate calls to close and they do not share a file
position.

int filesize (int fd)

Returns the size, in bytes, of the file open as fd.

int read (int fd, void *buffer, unsigned size)

Reads size bytes from the file descriptor, fd, into buffer. Returns the number of bytes
actually read (0 at end of file), or -1 if the file could not be read (due to a condition other than
end of file). An input in which fd is 0 should read from the keyboard using input_getc().

int write (int fd, const void *buffer, unsigned size)

Writes size bytes from buffer to file descriptor, fd. Should return the number of
bytes actually written, which may be less than size if some bytes could not be written.
While writing past end-of-file would normally extend the file, the basic file system does
not implement file growth. So, your implementation only needs to write as many bytes as
possible up to end-of-file and return the actual number written, or 0 if no bytes could be
written at all. A call in which fd is 1 should write to the console. You should try to write
all of buffer to the console in a single call; otherwise lines of text from different processes
can easily become interleaved.

void seek (int fd, unsigned position)

Changes the next byte to be read or written in file descriptor fd to be position, expressed
in bytes from the beginning of the file. Your implementation should not treat a seek past
the current end of a file as not an error. Instead, a later call to read or write on fd should
return 0, indicating end of file.

unsigned tell (int fd)

Returns the position of the next byte to be read or written in the file descriptor, fd,
calculated from the beginning of the file.

void close (int fd)

Closes file descriptor, fd. When a process terminates, whether from exit or through
abnormally, your PintOS should implicitly close all of the process’s open file descriptors.

CSE 134: Embedded Operating Systems 5

© Andrew Quinn

process termination message
Your PintOS should print a message indicating each time a user process has terminated. In
particular, it should print the name and exit code, formatted as though the following were
executed

printf("%s: exit(%d)\n", name, status);

where name is the name of the executable as passed to process_execute(), without any
command-line arguments, and status is the status code that the process passed to exit, or
-1 if the process terminated abnormally. PintOS should only produce the message for user
processes, not for any kernel threads that execute, nor in the case that a user process invokes
the halt system call.

Aside from this message, your PintOS should not print any other messages that the
default PintOS does not already print. Extra messages will confuse the grading scripts, so
be sure to remove any before submitting your assignment.

user memory
Many system calls ask that the operating system reference a user process’s memory (e.g.,
read). A buggy or malicious process may provide an invalid memory address; your PintOS
should prevent this from causing problems.

A Primer on PintOS Virtual Memory

To elaborate more, let’s start by describing virtual memory in PintOS.
PintOS’s virtual memory is divided into two regions: user virtual memory and kernel

virtual memory. User virtual memory ranges from virtual address 0 up to PHYS_BASE, defined
as 0xc0000000 (3 GB) in threads/vaddr.h. Each process has its own virtual memory
(or, address space). Each context switch exchanges virtual address spaces by changing the
processor’s page directory base register (see page_activate() in userprog/pagedir.
c). Note that, if the current kernel thread executing on PintOS has an associated user
process, then PintOS will be able to access that process’s virtual memory.

Kernel virtual memory occupies the rest of the virtual address space, from PHYS_BASE up
to 4 GB. Kernel virtual memory is global and always mapped the same way, regardless of
what user process or kernel thread is running. PintOS maps kernel virtual memory one-to-
one with physical memory, starting at PHYS_BASE. So, physical memory address 0x123 maps
to kernel virtual address PHYS_BASE + 0x123

The hardware ensures that a process running in userspace can only access its memory—
an attempt to access any memory outside of its address space (including accesses to kernel
virtual memory) causes a page fault, handled by page_fault()in userprog/exception.c.
In PintOS, the kernel cannot directly access physical memory—a kernel thread must access
memory either in kernel virtual memory or through its associated user process’s virtual mem-
ory. If a kernel thread attempts to access memory at an unmapped location, the hardware
will trigger a page fault.

CSE 134: Embedded Operating Systems 6

© Andrew Quinn

Safe User Memory Access

OK, with that background, now your task. You will need to provide mechanisms to read
and write data in user virtual address spaces. Since all system call inputs come from user
memory, even the system call number, you will need to use these facilities quite a bit!

There are basically two ways to do this correctly. First, you can verify that user-provided
pointers are correct before dereferencing them. This way is a bit easier to get working
correctly. If you choose this route, look at the functions in userprog/pagedir.c and in
threads/vaddr.h.

Second, you can first check if user-provided pointers are in userspace, by checking that
they are less than PHYS_BASE, and dereference them. An invalid user pointer will cause a
page fault; you can modify the code in page_fault() to handle the fault correctly. This
approach is a bit faster, typically, and thus is typically how modern kernels work. But, its a
lot more complex. Section 3.1.5 in the pintos website has some helper code for you to use to
implement this second approach. But, be warned: there are tricky bits left to implement.

rubric
We will use the following rubric for this assignment:

Category Percentage
Testing 60%
Design 40%

testing. We will use the provided tests for testing you assignment. You should hae 77
tests. If you see 80, then you should update your repository from the course upstream (by
clicking “update fork” on gitUCSC). This will account for 60% of your grade. You can run
these tests by executing the following from the src/userprog/build directory (after you
have run make from the src/userprog directory):

make check

To see the tests as they will be weighted for the final score, execute:

make grade

design. We will evaluate your design document based upon the following criteria:

1. Sufficient: (30%) Does your design document describe the system with sufficient detail
as to be re-creatable by an engineer?

2. Accurate: (30%) Does your design document accurately describe the design that you
implemented?

3. Correctness: (30%) Would your proposed design, assuming it were implemented cor-
rectly, satisfy the requirements of the assignment?

4. Simplicity: (10%) Is your design simple, rather than overly complex?

CSE 134: Embedded Operating Systems 7

https://web.stanford.edu/~ouster/cgi-bin/cs140-spring20/pintos/pintos_3.html#SEC52

© Andrew Quinn

hints
The pintos website provides a number of tips and hints for this assignment. The FAQ is
pretty good—you do not need to “deny writes to executables”, so no need to bother with
those tips.

getting started. This assignment is difficult because there are many moving parts. No
one task is too difficult, but you have to get a little bit of everything working before you
can test anything. Our suggestion is start your implementation by getting a small working
prototype of each of the components until you can run a simple program. Only then should
you start building up to implement full working components. For this project, here’s what
that entails:

1. Rather than getting argument parsing working off the bat, simply get the system to work
for argument free programs. You can do this by changing *esp = PHYS_BASE; to be
*esp = PHYS_BASE - 12; in the function setup_stack() in userprog/process.
c. This will actually give you the wrong program name (a value of null) and so you won’t
pass any tests.

2. Rather than implementing the safe user memory, start by assuming non-malicious users
and dereference user pointers directly.

3. Rather than implementing process_wait, simply replace it with an infinite loop. PintOS
calls this function on startup, so if you don’t replace this, the PintOS will never terminate.

4. Implement enough of the system call handler to get system call numbers from the stack.
Implement write when it is called on STDOUT_FILENO.

With this in place, you should be able to start a program and see it print something to the
console. You won’t pass any tests, though. The fastest route to start passing tests is to next
implement argument parsing and the process termination message.

calling conventions. We highly recommend looking at Section 3.5, especially the ex-
ample in Section 3.5.1, from this webpage to understand calling conventions. This will be
helpful for both argument parsing and for handling system call inputs

running programs. Running a user program requires having a file system image setup
correctly. PintOS provides a number of helpers for this task; see Section 3.1.2 from the
pintos webpage . Note that the testing scripts do all of this for you. You can copy and paste
the command that the testing scripts executes on each test rather than setting up the file
system manually each time.

CSE 134: Embedded Operating Systems 8

https://web.stanford.edu/~ouster/cgi-bin/cs140-spring20/pintos/pintos_3.html#SEC47
https://web.stanford.edu/~ouster/cgi-bin/cs140-spring20/pintos/pintos_3.html#SEC51
https://web.stanford.edu/~ouster/cgi-bin/cs140-spring20/pintos/pintos_3.html#SEC35
https://web.stanford.edu/~ouster/cgi-bin/cs140-spring20/pintos/pintos_3.html#SEC35

