
CSE 231—Advanced Operating Systems
“Disco”

Andrew Quinn

Background. Virtual machines were introduced in the 60s. In the 70s, Popek and Gold-
berg introduced a distinction between so called type-1 and type-2 hypervisors [5], which
remains widely used today. Type-1 hypervisors, sometimes called ’bare-metal’, execute di-
rectly on top of the hardware and guests are deployed above (see Figure 1a). Prevalent
Type-1 hypervisors include VMWare ESXi, and Xen. In contrast, Type-2 hypervisors exe-
cute on top of an existing operating system and are thus essentially equivalent to a process in
an OS (see Figure 1b). Example Type-2 hypervisors include VirtualBox, VMWare worksta-
tion, and QEMU. Finally, some systems do not neatly fit into either category. For example,
KVM [] has both Type-1 and Type-2 characteristics: it is a kernel module that essentially
makes Linux a Type-1 hypervisor, but deploys guest OSes on top of Linux. The community
continues to rigorously research, Type-1, Type-2, and other uncategorized hypervisors,

Hardware

VMM

G1 G2

(a) Type-1 Hypervisor. A Type-1 hypervisor
(VMM) executing two guest operating systems
(G1 and G2).

Hardware

OS

VMM App1

G1

(b) Type-2 Hypervisor. A Type-2 hypervisor
(VMM) executing alongside a single application
(App1) and running a single guest Operating sys-
tem (G1).

Summary. Disco investigates the use of Virtual Machine Managers (hypervisors) enabling
non-uniform memory access (NUMA) multiprocessors. Their high-level vision is that hyper-
visors present a solution to “computer vendors attempting to provide system software for
innovative hardware”, with shared-memory NUMA multiprocessors as the particular inno-
vative hardware that they target. The authors propose a number of key solutions to support
a fully virtualized platform, in which a guest experiences no difference between running on
raw hardware compared to running on the hypervisor. Disco creates virtualization layers
for most devices and computer components, including memory, IO devices, and networking

1



devices. Disco achieves scalability by deploying existing OSes side-by-side and using existing
distributed systems protocols for communication (e.g., NFS provides a shared file system
across guests). The results are strong, with virtualization coming with relatively meager
costs (3%–16% depending upon workload)

Questions/comments. At first glance, the paper’s main motivation seems stellar. A layer
of indirection that would allow existing systems to seamlessly adopt innovative hardware is
clearly a huge win, because it turns an O(m ∗ n) problem into an O(m + n) problem 1(see
below).

OS1 OS2 OS3

HW1 HW2 HW3

(a) No Abstraction. Each Operating System
would need to support each architecture in order
adopt innovation.

OS1 OS2 OS3

VMM

HW1 HW2 HW3

(b) VMM Abstraction. Each OS and archi-
tecture only needs to use or support the virtual
machine interface.

The problem is that unlocking the performance potential of innovative hardware will
almost invariably require operating system and application customization. For example, de-
velopers have updated the design of nearly all major operating systems in light of NUMA and
multicore systems. Moreover, the magnitude of hardware innovations that can be effectively
masked is necessarily minimal. For example, performance dictates that VMs execute di-
rectly on the hardware (i.e., there is no emulation layer), but that requires that all hardware
innovation be ISA agnostic.

Nevertheless, virtual machines remain an incredibly important primitive and construct
in operating systems today. In class, we identified the following reasons why developers and
operators love using virtual machines:

1. Fault Domains. Virtual machines separate a fault in one operating system from
another. This is especially useful when hacking a custom system.

2. Standardization. Virtual machines provide standardization in software deployment
for both developer and operations teams.

3. Security. Virtual Machines, provide separate security domains, at least in principle [].

4. Migration and Checkpointing. Virtual Machines are a strong abstraction upon
which to implement checkpointing and migration across deployed nodes.

5. Fault Tolerance. Virtual Machines are a strong abstraction upon which to build
system-level fault tolerance[1].

1This terminology is from Sky Computing [6]

2



6. Record & Replay Virtual Machines are a strong abstraction upon which to im-
plement deterministic record and replay, which further enables security forensics [2],
debugging [4], intrusion detection [3], etc.

References

[1] T. C. Bressoud and F. B. Schneider. Hypervisor-based fault tolerance. In Proceedings of
the Fifteenth ACM Symposium on Operating Systems Principles, SOSP ’95, page 1–11,
New York, NY, USA, 1995. Association for Computing Machinery.

[2] George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Basrai, and Peter M.
Chen. Revirt: Enabling intrusion analysis through virtual-machine logging and replay.
In Proceedings of the 5th Symposium on Operating Systems Design and Implementa-
tion (Copyright Restrictions Prevent ACM from Being Able to Make the PDFs for This
Conference Available for Downloading), OSDI ’02, page 211–224, USA, 2002. USENIX
Association.

[3] Ashlesha Joshi, Samuel T. King, George W. Dunlap, and Peter M. Chen. Detecting past
and present intrusions through vulnerability-specific predicates. In Proceedings of the
Twentieth ACM Symposium on Operating Systems Principles, SOSP ’05, page 91–104,
New York, NY, USA, 2005. Association for Computing Machinery.

[4] Samuel T. King, George W. Dunlap, and Peter M. Chen. Debugging operating sys-
tems with time-traveling virtual machines. In Proceedings of the Annual Conference on
USENIX Annual Technical Conference, ATEC ’05, page 1, USA, 2005. USENIX Associ-
ation.

[5] Gerald J. Popek and Robert P. Goldberg. Formal requirements for virtualizable third
generation architectures. Commun. ACM, 17(7):412–421, July 1974.

[6] Ion Stoica and Scott Shenker. From cloud computing to sky computing. In Proceedings
of the Workshop on Hot Topics in Operating Systems, HotOS ’21, page 26–32, New York,
NY, USA, 2021. Association for Computing Machinery.

3


