
CSE 231—Advanced Operating Systems
“Xen”

Andrew Quinn

Background. Type-1 hypervisors need to support a design like that of
Figure 1, in which a hypervisor is deployed above the hardware and supports
potentially multiple guests operating systems. Unfortunately, these designs
introduce a fundamental dilemma. Operating systems are designed with the
assumption that they are the most privileged system software and have full
machine capabilities. However, hypervisors inherently limit the privileges of
an operating system; resolving this conflict is non-trivial. To make matters
worse, the Hypervisors of the late 90s and early 2000s aimed for full virtu-
alization. I.e., these systems exported an virtual machine interface that was
identical to the underlying hardware interface. Since hardware at the time
had very little support for virtualization, so hypervisors required software
solution to support “the illusion of privilege” that operating systems require
for correct execution.

Prior systems, namely VMWare’s ESX server, dynamically rewrites por-
tions of the guest operating system during execution to insert the required
traps for correct virtualization. Dynamic rewriting is an expensive solution
that is often used for debugging, intrusion analysis, or software simulations.
Performance numbers are not provided, but the Xen paper alludes to the
high overhead of ESX.

Xen—Key Idea. The key idea of Xen is to “paravirtualize” operating
systems to run above a virtual machine layer. Essentially, paravirtualization
means manually porting the operating system to run on a hypervisor (e.g.,
modifying the way that OSes use privileged instructions) as opposed to the
dynamic instrumentation of ESX which automatically ports an OS.

1



Hardware

VMM

G1 G2

Figure 1: Type-1 Hypervisor. A Type-1 hypervisor (VMM) executing two
guest operating systems (G1 and G2).

Questions and Comments One key goal of Xen is to leave the ABI ex-
posed by each paravirtualized OS unchanged, so that applications do not need
to be modified to run on a virtual machine. However, there are application-
level instructions that map poorly to a virtualized world (e.g., int 0x80/syscall).
Why did Xen look into modifying applications as well to run more efficiently?

Perhaps the primary motivation for Xen is the XenoServer project, which
a pay-as-you-go cloud-computing interface eerily similar to the offerings of
AWS, Google Compute Cloud, and Microsoft Azure. Xen’s position is that
virtual machines are well suited for enabling diverse customer deployments.
In class, we identified the following as properties of virtual machines that
enable better deployability:

1. Scalability. Virtual machines can be collocated on a large host and
thus better take advantage of their resources.

2. Customizability. Virtual machines are very customizable for appli-
cations (e.g., you can specify a specific library!)

3. Isolation. Virtual machines provide isolation across guests.

But, these properties are all goals of the original time-sharing systems!
Are virtual machines just re-implementing the same features as an operating
systems? The answer is pretty much, yes, virtual machines are realizing the
same goals as the original time-sharing operating systems. What’s more,
they’re much higher overhead that an operating system, because virtual ma-
chine deployments will duplication of code, data, etc.

And yet, there don’t appear to be any cloud computing offerings that
allow users to deploy an application with processes as the primary unit

2



of isolation. Container (e.g., Docker and LXC) are close. They provide
operating-system level isolation but allow administrator-like configuration
for each user1. So, maybe containers are the answer, and virtual machines
are dead?

Of course not! Virtual machines are alive and well. Manco et al. provide a
compelling reason in their SOSP 2017 paper: safety [1]. The linux application
interface is massive, ever growing, and thus it is difficult to ensure that it
is safe. In comparison, the machine interfaces provided by virtual machines
move much slower and are much easier to secure. Manco and his coauthors
argue that the key challenge is performance; containers are smaller and lighter
than traditional virtual machines. Their solution? Make virtual machines
smaller by turning to UniKernels. Read the paper if you want more details!

References

[1] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuen-
zer, Sumit Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici. My
vm is lighter (and safer) than your container. In Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP ’17, page 218–233,
New York, NY, USA, 2017. Association for Computing Machinery.

1there’s also some resource usage tracking and other features

3


