
CSE 231—Advanced Operating Systems
“ReVirt”

or “What can we do with virtualization??”

Andrew Quinn

A note on the Authors. The advisor on the Revirt paper has been ac-
cused of heinous crimes. Incidentally, he was my advisor when he was ar-
rested. I have no idea if he did it, nor is it even reasonable for me to postulate.

This puts this paper in a tough spot. Revit is one of my favorite papers
and was instrumental in my thesis. While Revirt isn’t the first paper on
record and replay, it is the genesis of tons of work on record and replay in
the OS, SE, PL, and architecture communities (and, won a test of time award
as a result).

Ultimately, I decided to review this paper mainly because academics do
not make money from us studying their work; we gain knowledge while they
gain very little. Moreover, I decided to cover the work with two main stipula-
tions. First, while we often discuss the people behind the research, we won’t
do that here. Second, publicity, citations, and review are not equivalent to
and endorsement of the people who made the work (as stated above, I have
no idea of the authors guilt or innocence).

Summary. The trickiest technical bit in this paper is the discussion for
how they handle interrupts. The challenge is that the system needs to ensure
that each interrupt is delivered at precisely the same time during replay as it
was during recording. Some system prevent interrupts from being raised at
arbitrary points in the execution [2, 3]. However, ReVirt instead guarantees
that each interrupt will be raised before the same instruction.

The strawman approach instruments the program and counts all exe-
cuted instructions during recording and replay. Unfortunately, this would be
painfully slow. Note, however, that there are other counting schemes that

1



can still uniquely identify each execution instruction. For example, each
pair of (branch count (bc), program counter (pc)) uniquely defines an exe-
cuted instruction, so an interrupt raised before the same (bc, pc) pair during
recording and replay will be correct.

ReVirt uses to Intel’s performance counters to accelerate the pausing be-
fore a branch counter. The system tells the performance counters to raise
an interrupt after bc− 1 branches and then the processor single steps to pc.
Unfortuantely, performance counters have “skid”—they may raise an execu-
tion a few instructions after the bc’s branch. So, ReVirt actually chooses
an arbitrary value that will always be larger than the skew, and raises the
interrupt after bc− 128 instructions and then single-steps to the right spot.

Discussion. A major challenge facing record and replay systems is how
they will handle concurrency. In particular, how can you handle record and
replay of data races? Actually recording and replaying races will be overly
expensive, so what can you do?

1. SMP-Revirt [4]: use page-protections!

2. DeLorean [7]: use hardware!

3. ODR [1]/PRES [11]: treat replay as search!

4. Arnold [3]/Castor [6]: Races are bugs! No need to support!

Why might we record an execution? There have been a few major reasons
and techniques explored in the literature today:

1. Debugging [10]

2. Fault Tolerance [2]

3. Online analysis [9, 12]

4. Intrusion Analysis [5]

5. Workload Capture [8]

Record and replay is a super important approach in the research commu-
nity for many of these purposes.

2



References

[1] Gautam Altekar and Ion Stoica. Odr: Output-deterministic replay for
multicore debugging. In Proceedings of the ACM SIGOPS 22nd Sym-
posium on Operating Systems Principles, SOSP ’09, page 193–206, New
York, NY, USA, 2009. Association for Computing Machinery.

[2] T. C. Bressoud and F. B. Schneider. Hypervisor-based fault tolerance.
In Proceedings of the Fifteenth ACM Symposium on Operating Systems
Principles, SOSP ’95, page 1–11, New York, NY, USA, 1995. Association
for Computing Machinery.

[3] David Devecsery, Michael Chow, Xianzheng Dou, Jason Flinn, and Pe-
ter M. Chen. Eidetic systems. In Proceedings of the 11th USENIX
Conference on Operating Systems Design and Implementation, OSDI’14,
page 525–540, USA, 2014. USENIX Association.

[4] George W. Dunlap, Dominic G. Lucchetti, Michael A. Fetterman, and
Peter M. Chen. Execution replay of multiprocessor virtual machines.
In Proceedings of the Fourth ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments, VEE ’08, page 121–130,
New York, NY, USA, 2008. Association for Computing Machinery.

[5] Ashlesha Joshi, Samuel T. King, George W. Dunlap, and Peter M.
Chen. Detecting past and present intrusions through vulnerability-
specific predicates. In Proceedings of the Twentieth ACM Symposium
on Operating Systems Principles, SOSP ’05, page 91–104, New York,
NY, USA, 2005. Association for Computing Machinery.

[6] Ali José Mashtizadeh, Tal Garfinkel, David Terei, David Mazieres,
and Mendel Rosenblum. Towards practical default-on multi-core
record/replay. SIGPLAN Not., 52(4):693–708, apr 2017.

[7] Pablo Montesinos, Luis Ceze, and Josep Torrellas. Delorean: Recording
and deterministically replaying shared-memory multiprocessor execu-
tion ef?ciently. SIGARCH Comput. Archit. News, 36(3):289–300, jun
2008.

[8] Satish Narayanasamy, Cristiano Pereira, Harish Patil, Robert Cohn, and
Brad Calder. Automatic logging of operating system effects to guide

3



application-level architecture simulation. In Proceedings of the Joint
International Conference on Measurement and Modeling of Computer
Systems, SIGMETRICS ’06/Performance ’06, page 216–227, New York,
NY, USA, 2006. Association for Computing Machinery.

[9] Edmund B. Nightingale, Daniel Peek, Peter M. Chen, and Jason Flinn.
Parallelizing security checks on commodity hardware. In Proceedings of
the 13th International Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS XIII, page 308–318,
New York, NY, USA, 2008. Association for Computing Machinery.

[10] Robert O’Callahan, Chris Jones, Nathan Froyd, Kyle Huey, Albert Noll,
and Nimrod Partush. Engineering record and replay for deployability. In
Proceedings of the 2017 USENIX Conference on Usenix Annual Techni-
cal Conference, USENIX ATC ’17, page 377–389, USA, 2017. USENIX
Association.

[11] Soyeon Park, Yuanyuan Zhou, Weiwei Xiong, Zuoning Yin, Rini
Kaushik, Kyu H. Lee, and Shan Lu. Pres: Probabilistic replay with
execution sketching on multiprocessors. In Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Principles, SOSP ’09,
page 177–192, New York, NY, USA, 2009. Association for Computing
Machinery.

[12] Kaushik Veeraraghavan, Dongyoon Lee, Benjamin Wester, Jessica
Ouyang, Peter M. Chen, Jason Flinn, and Satish Narayanasamy. Dou-
bleplay: Parallelizing sequential logging and replay. In Proceedings of
the Sixteenth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS XVI, page 15–26,
New York, NY, USA, 2011. Association for Computing Machinery.

4


