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A note on the Authors. The advisor on the Revirt paper has been ac-
cused of heinous crimes. Incidentally, he was my advisor when he was ar-
rested. I have no idea if he did it, nor is it even reasonable for me to postulate.

This puts this paper in a tough spot. Revit is one of my favorite papers
and was instrumental in my thesis. While Revirt isn’t the first paper on
record and replay, it is the genesis of tons of work on record and replay in
the OS, SE, PL, and architecture communities (and, won a test of time award
as a result).

Ultimately, I decided to review this paper mainly because academics do
not make money from us studying their work; we gain knowledge while they
gain very little. Moreover, I decided to cover the work with two main stipula-
tions. First, while we often discuss the people behind the research, we won’t
do that here. Second, publicity, citations, and review are not equivalent to
and endorsement of the people who made the work (as stated above, I have
no idea of the authors guilt or innocence).

Summary. The trickiest technical bit in this paper is the discussion for
how they handle interrupts. The challenge is that the system needs to ensure
that each interrupt is delivered at precisely the same time during replay as it
was during recording. Some system prevent interrupts from being raised at
arbitrary points in the execution [2, 3]. However, ReVirt instead guarantees
that each interrupt will be raised before the same instruction.

The strawman approach instruments the program and counts all exe-
cuted instructions during recording and replay. Unfortunately, this would be
painfully slow. Note, however, that there are other counting schemes that

1



can still uniquely identify each execution instruction. For example, each
pair of (branch count (bc), program counter (pc)) uniquely defines an exe-
cuted instruction, so an interrupt raised before the same (bc, pc) pair during
recording and replay will be correct.

ReVirt uses to Intel’s performance counters to accelerate the pausing be-
fore a branch counter. The system tells the performance counters to raise
an interrupt after bc− 1 branches and then the processor single steps to pc.
Unfortuantely, performance counters have “skid”—they may raise an execu-
tion a few instructions after the bc’s branch. So, ReVirt actually chooses
an arbitrary value that will always be larger than the skew, and raises the
interrupt after bc− 128 instructions and then single-steps to the right spot.

Discussion. A major challenge facing record and replay systems is how
they will handle concurrency. In particular, how can you handle record and
replay of data races? Actually recording and replaying races will be overly
expensive, so what can you do?

1. SMP-Revirt [4]: use page-protections!

2. DeLorean [7]: use hardware!

3. ODR [1]/PRES [11]: treat replay as search!

4. Arnold [3]/Castor [6]: Races are bugs! No need to support!

Why might we record an execution? There have been a few major reasons
and techniques explored in the literature today:

1. Debugging [10]

2. Fault Tolerance [2]

3. Online analysis [9, 12]

4. Intrusion Analysis [5]

5. Workload Capture [8]

Record and replay is a super important approach in the research commu-
nity for many of these purposes.
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