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Software Reliability. Generally, in software reliability ask the question:
“How do we make our systems behave correctly?”. For this class, we’ll focus
software bugs as opposed to fault tolerance work, which usually focuses on
hardware failures.

A bit of terminology that we will use:

e Failure When a program’s external output differs from its specifica-
tion.

e Fault The algorithmic cause of a failure. We will use the term bug
interchangeably with fault.

The community studies and improves reliability in a number of ways,
including:

1. Bug-Finding in large systems. Many systems works study how
to find bugs in large systems. Usually, these papers also survey and
seek to understand the properties of the bugs they find. Example work
includes: Bugs as Deviant Behavior [1], Crash-consistency detection [5],
data race detection [2], and today’s paper, Eraser [7].

2. Guardrails. Much like guardrails prevent vehicles from falling off of
a road, some systems have been designed to prevent or reduce the
impact of bugs in production. Such systems include Nooks [9], Failure
Oblivious Computing [6], and Frost [10].

3. Better Engineering. Many works aim to provide fundamentally bet-
ter engineering practices to reduce the incidence of bugs in software
systems. Most of the research in the community in this area is in
formal verification, such as IronFleet [3], the push-button verification

work [8], and the SeL4 [4].



Summary. FEraser introduces the lockset algorithm to find concurrency
issues in software. Their primary argument is that most software uses a
locking mechanism to mediate access to shared memory, so many bugs can
be found by simply tracking the properties of locking within an application.

I love this paper for our class because it is a great introduction to so many
aspects of bug finding, including soundness vs. completeness, dynamic vs.
static, and fault-detection vs. failure-detection.

We’ll go through each of these ideas in the next few paragraphs. But, first
let’s give ourselves a model for thinking about a program and its execution.
A program, P, is a blob of text written in a particular grammar (for our
purposes, we won’t consider programs that do not compile). An execution
of the program, E, is the result of passing a specific input to the program.
We can think of the execution as a trace of events. N.b., there are weak
memory consistency models that cannot be totally ordered and thus cannot
be modeled in this way, but these details are not important for our discussion.
?? provides pictorial representations of these concepts.

soundness vs. completeness. There are two goals that a bug detector
should try to optimize. First, a bug detection should be sound, i.e., ideally, it
should report no false positives, or bugs that are reported by the tool but are
accepted behavior. Additionally, a bug detection tool should be complete,
i.e., ideally it should incur no false negatives, or bugs that are in the program,
but not reported by the tool. Unfortunately, bug detection is almost always
impossible since it is involves inspecting an arbitrary program and is thus
equivalent to solving the halting problem.

Thus, most systems trade-off soundness and completeness, and many
trade-off both. For example, at numerous points in the paper, Eraser uses a
heuristic that incur false negatives in the interest of reducing false positives.
There is no correct answer in determining whether to favor soundness and
completeness; no matter what decision your tool chooses, reviewers will likely
leave upset.

dynamic vs. static detection. There are essentially two broad classes of
bug detection: dynamic tools, which trace an actual execution to find bugs,
and static tools, which inspect the source code of a program to find bugs. In
general, static analysis tools can be more complete, since they can inspect all
possible actions that a program might take. However, static program analyses



struggle due to the combinatorial number of potential program behaviors, so
static analyses are almost always unsound and report false positives (n.b.,
the alternative is a static analysis with no false positives, but many false
negatives since it has limited understanding of the target program). Dynamic
program analyses have runtime information and thus make better decisions,
but inherently are incomplete since they only view a single program execution
at a time.

fault-detection vs. failure-detection. Dynamic detection tools can use
a few different approaches for bug detection. The first is what I call failure-
detection: the testing tool can inspect program output to find a failure. Such
a tool can look for obvious failures (e.g., segmentation faults or failed asser-
tions) or can look for specification specific issues (e.g., many file system tools
understand the intended semantics of POSIX file system operations). Models
of the intended specification for a program can be difficult to build for an
arbitrary application, so many developers instead inspect the trace of actions
taken by the program to detect a bug (essentially, detecting the fault in the
program). The challenge is that not all “faulty” behavior will inherently lead
to a failure in all programs. For example, while a invalid pointer derference
is undefined behavior in the C/C++ specification, a program could include
a signal handler that allows enables correct output in the case of a segfault
and survive such canonically faulty actions.
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