
CSE 231—Advanced Operating Systems
“Bugs as Deviant Behavior”

Andrew Quinn

Summary. This paper introduces the idea of looking for deviations from
the norm to automatically find bugs in large scale software systems. Their
tools find dozens of bugs in large-scale open sources operating systems using
this approach.

Discussion. Although it is never explicitly stated, this paper is really
about solving the oracle problem in software testing. The oracle problem is
about determining whether some possible behavior in an application should
be considered correct. For example, one possible oracle is to build a simple
but correct version of your program (e.g., one that performs poorly) and en-
sure that the full implementation has the same output as the correct version
(note, you cannot guarantee this for all inputs, but you can do it for many
inputs).

Bugs as deviant behavior shows that we can essentially infer an oracle for
a programs behavior by looking for “normal” behavior and deviations from
it. For this to work well, the approach needs for most of the program to be
correct1. As such, the approach is probably best as an addition to software
testing rather than as a replacement for software testing: ideally, testing
will identify egregious bugs, while deviant behavior will generalize the bugs
identified by testing2

My biggest question after reading the paper is how well their system
actually realizes there goals. First, many of their bugs were not deviant
behavior, but essentially violations that are guaranteed to be failures (e.g.,
null pointer dereferences). Are these really using their approach? Second,

1many of you noted this limitation in reviews and/or during discussion
2This might actually be a nice idea for a bug finding tool...

1



their approach relies on these templates, which limits the space of behaviors
to inspect, but also detracts from their inference claims.

The final paper related thing to discuss is the use of static bug detection.
Many systems today are not using a compiler-based approach, since it seems
difficult to have sufficient static knowledge to find bugs. Systems that strive
for the greater code coverage that comes with a static tool are using tech-
niques that allow them to simulate an executing program. Such tools include
symbolic execution (e.g., KLEE [?]) and concollic execution (e.g., Dart [?]).

The ideas from this paper eventually became a fully blown system and
startup called Coverity. Those involved in Coverity eventually wrote a retro-
spective, “A few billion lines of code later” where they describe their experi-
ences [1]. There are many anecdotes and lessons that they present, but my
two favorites are (1) practical bug finders need to be deterministic, otherwise
developers cannot easily know if they are making progress on removing bugs
from their software and (2) the biggest challenges in testing arbitrary code
is dealing with peculiarities of parsing and compiling code in a non-standard
build system.

References

[1] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem,
Charles Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson Engler.
A few billion lines of code later: Using static analysis to find bugs in the
real world. Commun. ACM, 53(2):66–75, feb 2010.

2


