
CSE 231—Advanced Operating Systems
“Failure Oblivious Computing”

Andrew Quinn

Summary. This paper introduces the idea of failure oblivious computing
(FOC) [3] Essentially, the paper investigates the applicability of ignoring
memory errors by performing “reasonable” default behavior when an invalid
read or write occurs. Their solution works well across a number of real-world
web-servers, largely because these applications have short “error propaga-
tion”, i.e., errors effect a relatively small portion of an execution immediately
after the error, but do not effect the long-term behavior of the application.

Perhaps the most confusing part of this paper is the actual system design
and implementation. They used all of about a page to describe this section;
probably because FOC mostly builds on preexisting work into safe-C. I won’t
describe the actual implementation in detail, except to say that it builds
on idea that “all pointer calculations should point to the same object as
the pointers that were used to derive them (e.g., a ∗ ptr + b should point
to ptr) [1, 4]. These approaches then track the object that each pointer
calculation points-to, and identify errors when the calculation does not lie in
the bounds its object.

Discussion. This paper is a highly controversial idea that was reportedly
very contentious at the OSDI ’04 conference. My position is that it is a to-
tally reasonable approach (if, admittedly, a dangerous one) because currently,
the C/C++ spec defines the memory errors that FOC targets as undefined
behavior. That is, we currently have no guarantees about what happens
when a program performs a buffer overflow 1. Undefined behavior can be a

1I’m not certain of the details of memory errors, but other undefined behavior, data
races, are so unsupported that the compiler can actually give you back an arbitrary pro-
gram if your program has a data race!

1



huge problem [5] for modern systems, and some guarantees are clearly better
than no guarantees, right?

This tough to answer, especially for current applications. For example,
Linux provides a mechanism to catch and handle segmentation faults (i.e.,
signal handlers), which might obviate the need for FOC. Moreover, FOC
also has a major potential impact on debuggability, especially in distributed
contexts. Supposing that there are multiple failures that were handled by
FOC, how do I know whether a downstream failure occurred only because
of FOC’s handling of an earlier failure? This is particularly problematic
in the context of a large distributed system, where tracing the causality of
application behavior can be next to impossible. Logging all failures that
FOC handles seems clearly insufficient.

In class, we outlined an alternative approach based upon speculation
and checkpointing. Essentially, our idea was to checkpoint the application at
every user request. If request processing fails, then you can simply rollback to
the earlier checkpoint. Unfortunately, it is not obvious when a request begins,
so the approach will likely instead need to checkpointing and potentially
rollback after each input to the server. There have been systems with similar
approaches to this, such as EVE, which used speculation for state machine
replication of multi-threaded programs [2]. However, general adoption seems
difficult since it is unclear whether a “good” rollback point can be identified
after a failure in general.

There are other “seat-belts” that provide similar failure obliviousness
(but for other classes of failure). Of particular interest is Frost [?], which
builds on the DoublePlay work by simultaneously executing two versions of
a program with each version following a complimentary schedule. The key
insight is that deviations between two complimentary scheduled executions
only arise because of harmful races, and you can usually determine which
version is “correct” by looking for obvious failures (e.g., segfaults).

References

[1] Richard W. M. Jones and Paul H. J. Kelly. Backwards-compatible bounds
checking for arrays and pointers in c programs. In AADEBUG, 1997.

[2] Manos Kapritsos, Yang Wang, Vivien Quema, Allen Clement, Lorenzo
Alvisi, and Mike Dahlin. All about eve: Execute-verify replication for

2



multi-core servers. In Proceedings of the 10th USENIX Conference on
Operating Systems Design and Implementation, OSDI’12, page 237–250,
USA, 2012. USENIX Association.

[3] Martin Rinard, Cristian Cadar, Daniel Dumitran, Daniel M. Roy, Tudor
Leu, and William S. Beebee. Enhancing server availability and security
through failure-oblivious computing. In Proceedings of the 6th Confer-
ence on Symposium on Operating Systems Design and Implementation -
Volume 6, OSDI’04, page 21, USA, 2004. USENIX Association.

[4] Olatunji Ruwase and Monica S. Lam. A practical dynamic buffer overflow
detector. In NDSS, 2004.

[5] Xi Wang, Nickolai Zeldovich, M. Frans Kaashoek, and Armando Solar-
Lezama. Towards optimization-safe systems: Analyzing the impact of
undefined behavior. In Proceedings of the Twenty-Fourth ACM Sympo-
sium on Operating Systems Principles, SOSP ’13, page 260–275, New
York, NY, USA, 2013. Association for Computing Machinery.

3


