
Bugs as Deviant Behavior: A General Approach
to Inferring Errors in Systems Code

CSE231 Presentation
Lakshmi Krishnaswamy

Background and motivation
● Different methods used to find errors in a system

○ Testing and manual inspection

○ Type systems

○ Formal verification

○ High-level compilation

○ Dynamic analysis

image reference

Motivation

● Often difficult to derive the exact correctness rules

for a system

● How can we still design a checker without prior

knowledge about the system ?

image reference

Design Principles

● Requires no knowledge about system correctness rules

● Infer programmer’s beliefs from source code

○ “if two beliefs contradict, we know that one is an error without knowing what the correct belief is.”

● If there is a contradiction, then there is at least one statement which is wrong.

System Design

Inferring
Beliefs

Templates

 Checkers

System Design
● MUST beliefs, directly implied by the code

● Any contradiction means there is an error in the code

Beliefs

System Design
● MAY beliefs, suggested beliefs, could be a coincidence

● Not all contradictions are errors

● Need to separate out noise from errors Beliefs

System Design
● Outline for a rule

● Example, <a> must be paired with

● <a> and positions are slots

● Filled with elements from source code

○ Slot instances, example “lock” and “unlock” function calls.

Templates

System Design
● General method for finding bugs

● Internal consistency checkers used with MUST beliefs

● Statistical analysis checkers used with MAY beliefs

 Checkers

Framework for internal consistency checkers

● The rule template T

● The valid slot instances for T

● The code actions that imply

beliefs

● The rules for how beliefs combine,

including the rules for

contradictions

● The rules for belief propagation
Reference : from paper

Internal consistency checkers

● MUST beliefs inference

○ Direct observation

○ Implied pre and post conditions

● More beliefs found, more applicable the checker

● Ranking results not necessary because a single contradiction results in an error

Framework for statistical analysis checkers

● It applies the check to all potential slot

instance combinations, it assumes that all

combinations are MUST beliefs.

● It indicates how often a specific slot

instance combination was checked and

how often it failed the check (errors).

● It is augmented with a function, rank, that

uses the count information above to rank

the errors from all slot combinations from

most to least plausible.

Statistical analysis checkers

● z statistics for proportions used for sorting between noise and errors

n = number of check

e = number of successful checks

p
0

 = probability of the examples

● Latent specifications to prune the search space

Performance Evaluation

● Analyses written using Metal - high- level state machine (SM) language for writing system- specific

compiler extensions

● Tested on Linux and OpenBSD

○ Linux 2.4.1 and 2.4.7

○ OpenBSD 2.8

● Checkers implemented and tested

○ Internal Null Consistency

○ Security Checker

○ Failure Checker

○ Temporal rules derivation

Performance Evaluation
Internal Null Consistency : Finds pointer errors, flags three types of contradictory or redundant beliefs

Security : checks for kernel safe pointers, and “tainted” pointers, raise error if a pointer is both

What’s the overhead associated with
so many applications of the checker ?!

Performance Evaluation
Failure checker : Find routines that aren’t checked for failures

● Found some unexpected, error - not detected before !! IS_ERR consistency checking

Violation of temporal rules : checking to make sure sequence of actions is followed. One case is making

sure, freed memory is not used.

● Made use of latent specifications to prune for applicable function pairs

● Hierarchical ranking for reducing the number of false positives.

Takeaways

● Hundreds of errors discovered in real systems, resulting in kernel patches !!

● Some unexpected, serious bugs discovered too!!

● Fairly higher number of false positives reported

Conclusion

● Automatic inference of bugs without system knowledge

● Presents two checker frameworks that implement this

● Easily re-targetable to new systems and fixed overheads*

● Future works on complete automation using machine learning approaches

A very interesting work, with promising performance and future directions, which could address the

issues of existing need for added manual inspection and analysis overheads.

Questions and Discussion

1) In a system that is designed as a checker, as in this paper, how would we model and account

for “completeness”, given they can find bugs but can’t guarantee the absence of bugs.

2) What if a “belief” doesn’t fit a template? How common would these cases be and how

scalable/ adaptable is this method in such cases - how expensive is it to come up with new

templates, or would we have to then come up with other tools in order to analyze such

beliefs ?

3) They mention about augmenting static analysis with dynamic monitoring, which seems very

promising. What could be some advantages ? Is this something used today ?

