CSE231 - Advanced Operating Systems

Eraser
Bl E A Dynamic Data Race Detector
e R for Multithreaded Programs

Fabien Savy - 11/12/2021

Photo by David Pennington on Unsplash

https://unsplash.com/@dtpennington?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/eraser?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Outline

e Motivation

e Background

e Design & Implementation
e EXperiments

Discussion

2/22

Motivation

Multithreading is hard

e time-dependent data races

e hard to debug and time
consuming

See also:

e Lottery scheduling

e Scheduler activations

Comic from r/ProgrammerHumor

SITUATION:

There is a
problem.

Let's use

multithreading.

SITUATION:

rheTe
are

97
prms.oble

3/22

https://www.reddit.com/r/ProgrammerHumor/comments/dtiufv/multithreading_fixing_a_problem/

Data race recipe

Ingredients

e At least two concurrent threads

e A shared variable v
Steps

e Don't use synchronization mechanisms

e Access v concurrently while a thread is writing

4/22

Motivation

Data race example

P1

P2

x.write(12)

— x.read() - ?

—

x.write(42)

5/22

Motivation

Data race example: possible outcomes

P1

P2

P1

P2

x.write(12) — xread() > 42 —»
xjwrite(42) >
x.write(12) x.read() - 12 —»
X.write(42) >

6/22

Motivation

Synchronization primitives

Locks
PL — 0 xwrite(12) — 0O 0/ xread() - 42 — 0 —»
P2 O xwrite(42) 0O >

® semaphores/ events / condition variables / signals

7/22

Previous work

e monitors (Hoare, 1974)
o group shared variables with related procedures

o protect the procedures with a lock
o @ does not support dynamic allocation

e LockLint (SunSoft, 1994)
o purely static detection

e Lamport's happens-before relation (1978)
o inside a thread (execution order)

o between threads (synchronization accesses)

8/22

Background

Happens-before problems &

e inefficient

e dependent on the execution interleaving

P1

P2

x.write(12)

— y.write(39)

o more runs can mitigate this issue

— y.write(27)

— x.write(74)

—-

9/22

Design & Implementation

Design

Enforce a simple locking discipline that
every shared variable is protected by some lock

e maintain a set of locks (/lockset) held when accessing each variable
e refine each set after each access

e A emit a warning if a set becomes empty

10/22

Design & Implementation

Lockset refinement

Figure 3 from the Eraser paper

Program

lock (mul);
v = wv+l;

unlock(mul) ;

lock (mu2);
v 1= v+1l;

unlock {(muz2) ;

locks _held
{}

{mul}

i}

{mu2}

{}

C(v)

{mul,mu2}

{mul}

{}

11/22

Edge cases

e unprotected initializations ()

e read-shared variables
o Write once then always read

e read-write locks
o multiple readers, single writer

12/22

Design & Implementation

Edge cases handling

the first thread

e stateful variables a thread reads or writes

. . WiES
e differentiate read and

write lock sets a new thread

WIHES ST
Modified

a new thread
reads

write

Figure 4 from the Eraser paper 13/22

Design & Implementation

Implementation

A testing utility that instruments a binary to call the Eraser runtime.
(only for the heap and global data)

e |0ads & stores
e thread initialization & finalization

e memory allocation

14/22

Representing Lock Sets

index lockset hash
1 {Mmul, mu2} ©xBAADFOOD
2 {Mmul} OXE5CA1ADE
3 {mu?2} OXBOBACAFE

e cache set intersections

e associate a shadow word to each variable
o 30 bits for the lock set index

o 2 bits for the variable state

15/22

False alarm mitigation

e memory reuse (free lists, private allocators)
e private locks (non- pthread)

e benign races

— developers can add annotations

e EraserReuse(address, size)

e EraserReadLock(lock)

16/22

Experiments

Performance

e a3 10x to 30x slowdown
e probably due to the numerous procedure calls

° probably impacts scheduler behavior

17/22

Experiments

Tested against several industry programs:

e AltaVista mhttpd & Ni2 (net indexer)
30 minutes to identify and fix month-old races

e \Vesta cache server

e Petal distributed storage system

— numerous false alarm
— but also several real race conditions

18/22

Undergraduate coursework evaluation

e 10% had data races

e could have provided Eraser to students &

19/22

Bonus

e experiment to detect races in the SPIN OS kernel
o which leverages interrupt levels as informal locks

o @ proof that the system is not generic enough
e multiple lock handling

It's possible but it might break things

e deadlock detection
o ordered locking & unlocking

20/22

Thoughts

e only lock-based programs is quite restrictive

e several issues swept under the carpet ¢
o scheduler dependency (variable initialization)

o slowdown impact

e Strange experimentation

21/22

Discussion

e The authors chose to work with lock-based programs only. Would it be
possible to work with other synchronization primitives?

e What do you think about using a dynamic testing method?

« What are current techniques to ensure thread safety? Is it possible to
statically ensure thread safety? (type-safe languages?)

22/22

