
Eraser

A Dynamic Data Race Detector

for Multithreaded Programs

Fabien Savy - 11/12/2021

CSE231 - Advanced Operating Systems

Photo by David Pennington on Unsplash

https://unsplash.com/@dtpennington?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/eraser?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Outline
Motivation

Background

Design & Implementation

Experiments

Discussion

2/22

Multithreading is hard

time-dependent data races

hard to debug and time
consuming

See also:

Lottery scheduling

Scheduler activations

Motivation

Comic from r/ProgrammerHumor 3/22

https://www.reddit.com/r/ProgrammerHumor/comments/dtiufv/multithreading_fixing_a_problem/

Data race recipe

Ingredients

At least two concurrent threads

A shared variable

Steps

Don't use synchronization mechanisms

Access concurrently while a thread is writing

Motivation

v

v

4/22

Data race example

Motivation

5/22

Data race example: possible outcomes

Motivation

6/22

Synchronization primitives

Locks

 semaphores / events / condition variables / signals

Motivation

7/22

Previous work
monitors (Hoare, 1974)

group shared variables with related procedures

protect the procedures with a lock

 does not support dynamic allocation

LockLint (SunSoft, 1994)
purely static detection

Lamport's happens-before relation (1978)
inside a thread (execution order)

between threads (synchronization accesses)

Background

8/22

Happens-before problems

inefficient

dependent on the execution interleaving
more runs can mitigate this issue

Background

9/22

Design
Enforce a simple locking discipline that

every shared variable is protected by some lock

maintain a set of locks (lockset) held when accessing each variable

refine each set after each access

 emit a warning if a set becomes empty

Design & Implementation

10/22

Lockset refinement

Design & Implementation

Figure 3 from the Eraser paper 11/22

Edge cases

unprotected initializations ()

read-shared variables
write once then always read

read-write locks
multiple readers, single writer

Design & Implementation

12/22

Edge cases handling

stateful variables

differentiate read and
write lock sets

Design & Implementation

Figure 4 from the Eraser paper 13/22

Implementation
A testing utility that instruments a binary to call the Eraser runtime.

(only for the heap and global data)

loads & stores

thread initialization & finalization

memory allocation

Design & Implementation

14/22

Representing Lock Sets

index lock set hash

1 {mu1, mu2} 0xBAADF00D

2 {mu1} 0xE5CA1ADE

3 {mu2} 0xB0BACAFE

cache set intersections

associate a shadow word to each variable
30 bits for the lock set index

2 bits for the variable state

Design & Implementation

15/22

False alarm mitigation

memory reuse (free lists, private allocators)

private locks (non- pthread)

benign races

 developers can add annotations

EraserReuse(address, size)

EraserReadLock(lock)

Design & Implementation

→

16/22

Performance
a 10x to 30x slowdown

probably due to the numerous procedure calls

 probably impacts scheduler behavior

Experiments

17/22

Experiments
Tested against several industry programs:

AltaVista mhttpd & Ni2 (net indexer)
30 minutes to identify and fix month-old races

Vesta cache server

Petal distributed storage system

 numerous false alarm

 but also several real race conditions

→
→

18/22

Undergraduate coursework evaluation

10% had data races

could have provided Eraser to students

19/22

Bonus
experiment to detect races in the SPIN OS kernel

which leverages interrupt levels as informal locks

 proof that the system is not generic enough

multiple lock handling
It's possible but it might break things

deadlock detection
ordered locking & unlocking

20/22

Thoughts
only lock-based programs is quite restrictive

several issues swept under the carpet
scheduler dependency (variable initialization)

slowdown impact

strange experimentation

Discussion

21/22

Discussion
The authors chose to work with lock-based programs only. Would it be
possible to work with other synchronization primitives?

What do you think about using a dynamic testing method?

What are current techniques to ensure thread safety? Is it possible to
statically ensure thread safety? (type-safe languages?)

Discussion

Thank you for your attention! 22/22

