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Hard Drive Schematic

• Cylinder-Head-Sector (CHS) 

• Sector: a slice of a platter, typically 512 bytes. 

• Track: concentric circle on a platter.


• Cylinder: a stack of tracks across platters.


• Cylinder group: one or more consecutive 
cylinders 

• Head: device that performs the reads/writes.


• Heads connected by an arm.
By Henry Mühlpfordt, png version from 2010: Bagok - Own work, vectorization of: Festplattengeometrie.PNG, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=79334677



Unix File System (UFS)

• “Simple” programmer interface.


• Reads/writes 512-bytes at a time.


• Used on PDP-11 and VAX-11.


• Terrible throughput.


• Around 2% of maximum disk 
bandwidth.

• By Stefan_Kögl - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=466937

• By Emiliano Russo, Associazione Culturale VerdeBinario - Public Domain, https://commons.wikimedia.org/w/index.php?curid=4807141

https://commons.wikimedia.org/w/index.php?curid=466937


UFS Layout

boot block superblock inodes cylinder group ndata blocks

• Free data blocks tracked with a free list.


• Linked list of free data blocks.


• Pointer to list in superblock.



Inodes

• Describes files.


• Everything in UNIX is a file.


• Identified with an i-number.


• Files made up of data blocks.


• Indirect blocks can point at 
indirect blocks.
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Goals for Fast File System (FFS)

• Better locality for inodes and data blocks.


• Faster throughput for small and large files.


• Flexible for different processor/storage characteristics.


• Enhance programmer interface.



FFS Disk Layout
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Redrawn based on: https://docs.oracle.com/cd/E19455-01/805-7228/6j6q7uf0r/index.html



Bigger blocks

• Good for large files.


• More data transfer per disk transaction.


• Bad for small files.


• File systems are typically made up of small files.


• In general, this means more wasted space.



Fragmenting Blocks

• Break blocks into 2, 4, or 8 addressable fragments.


• Smallest fragment is the size of a sector.


• Store big files using as many blocks as possible.


• Remaining data goes into fragments.


• Smaller files can use available fragments!



Knowledge is Power

• UFS doesn’t account for underlying hardware.


• FFS stores more information to make better decisions.


• How fast does the disk spin?


• How far apart to place blocks for a single file?


• FFS parameterizes processor/storage properties to make this possible.


• Even provides optimal block size for specific applications.



Placing Directories and Files

• FFS layout policies split into global and local policies.


• Global policies:


• How do we cluster inodes and data blocks?


• Should we seek to another cylinder group?


• Local policies:


• How should data blocks be laid out?



How Much Faster For Reads?

• Tests run on VAX-11/750.


• No data processing by any 
test programs.


• Programs run at least three 
times in succession.


• File system had 10% free 
space reserve.


• Halved performance with 
full file system.

Filesystem Type Processor and 
bus measured Speed (KBytes/s) Read bandwidth (%) % CPU

Old 1024 750/UNIBUS 29 3 11

New 4096/1024 750/UNIBUS 221 22 43

New 8192/1024 750/UNIBUS 233 24 29

New 4096/1024 750/MASSBUS 466 47 73

New 8192/1024 750/MASSBUS 466 47 54

Data from McKusick, et al. A Fast File System for UNIX



How Much Faster For Writes?

• Tests run on VAX-11/750.


• No data processing by any 
test programs.


• Programs run at least three 
times in succession.


• File system had 10% free 
space reserve.


• Halved performance with 
full file system.

Filesystem Type Processor and 
bus measured Speed (KBytes/s) Write bandwidth (%) % CPU

Old 1024 750/UNIBUS 48 3 29

New 4096/1024 750/UNIBUS 142 14 43

New 8192/1024 750/UNIBUS 215 22 46

New 4096/1024 750/MASSBUS 323 33 94

New 8192/1024 750/MASSBUS 466 47 95

Data from McKusick, et al. A Fast File System for UNIX



Longer File Names

• Maximum file name length: 255


• But they claim this is “nearly arbitrary 
length.”


• Directories allocated in 512-byte 
chunks.


• Each chunk contains an entry.
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Locking Files

• Files are locked for concurrent 
updates.


• Two schemes:


• Hard locking


• Advisory locking ⇒ used in FFS.


• Advisory locking uses shared and 
exclusive locks.
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Symbolic Links

• Each file is linked to an inode.


• Files can appear in multiple 
directories.


• UFS only supported hard links.


• Can’t be used across file systems.


• Symbolic links are just files with a 
pathname.


• Link count not incremented.
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Renaming

• Programs that renamed required a 
temporary file.


• UFS required three system calls to 
rename.


• Failure with system or program ⇒ file 
isn’t moved properly.


• May end up with temporary name 
instead.

file



Protecting Users From Other Users

• Users could originally allocate all 
available resources.


• Quotas are set per user to enforce 
limits.


• Capped number of inodes.


• Capped number of data blocks.


• Users reprimanded if they go over 
quota.



A Couple Questions

• How would flash memory affect this file 
system design?


• Were the performed tests rigorous?


• Why didn’t they attempt deadlock 
detection with their advisory file locking?


