
Eugene Chou (euchou@ucsc.edu)

A Fast File System for UNIX
Exploiting spatial locality on disk.

mailto:euchou@ucsc.edu


Hard Drive Schematic

• Cylinder-Head-Sector (CHS) 

• Sector: a slice of a platter, typically 512 bytes. 

• Track: concentric circle on a platter.


• Cylinder: a stack of tracks across platters.


• Cylinder group: one or more consecutive 
cylinders 

• Head: device that performs the reads/writes.


• Heads connected by an arm.
By Henry Mühlpfordt, png version from 2010: Bagok - Own work, vectorization of: Festplattengeometrie.PNG, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=79334677



Unix File System (UFS)

• “Simple” programmer interface.


• Reads/writes 512-bytes at a time.


• Used on PDP-11 and VAX-11.


• Terrible throughput.


• Around 2% of maximum disk 
bandwidth.

• By Stefan_Kögl - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=466937

• By Emiliano Russo, Associazione Culturale VerdeBinario - Public Domain, https://commons.wikimedia.org/w/index.php?curid=4807141

https://commons.wikimedia.org/w/index.php?curid=466937


UFS Layout

boot block superblock inodes cylinder group ndata blocks

• Free data blocks tracked with a free list.


• Linked list of free data blocks.


• Pointer to list in superblock.



Inodes

• Describes files.


• Everything in UNIX is a file.


• Identified with an i-number.


• Files made up of data blocks.


• Indirect blocks can point at 
indirect blocks.

metadata

0

1

2

…

n

3

4

5

inode

indirect block

data blocks



Goals for Fast File System (FFS)

• Better locality for inodes and data blocks.


• Faster throughput for small and large files.


• Flexible for different processor/storage characteristics.


• Enhance programmer interface.



FFS Disk Layout

boot block

superblock

bitmap

inodes

data blocks

data blocks

redundant superblock

bitmap

inodes

data blocks

data blocks

redundant superblock

bitmap

inodes

data blocks

cylinder group 0 cylinder group 1 cylinder group n

Redrawn based on: https://docs.oracle.com/cd/E19455-01/805-7228/6j6q7uf0r/index.html



Bigger blocks

• Good for large files.


• More data transfer per disk transaction.


• Bad for small files.


• File systems are typically made up of small files.


• In general, this means more wasted space.



Fragmenting Blocks

• Break blocks into 2, 4, or 8 addressable fragments.


• Smallest fragment is the size of a sector.


• Store big files using as many blocks as possible.


• Remaining data goes into fragments.


• Smaller files can use available fragments!



Knowledge is Power

• UFS doesn’t account for underlying hardware.


• FFS stores more information to make better decisions.


• How fast does the disk spin?


• How far apart to place blocks for a single file?


• FFS parameterizes processor/storage properties to make this possible.


• Even provides optimal block size for specific applications.



Placing Directories and Files

• FFS layout policies split into global and local policies.


• Global policies:


• How do we cluster inodes and data blocks?


• Should we seek to another cylinder group?


• Local policies:


• How should data blocks be laid out?



How Much Faster For Reads?

• Tests run on VAX-11/750.


• No data processing by any 
test programs.


• Programs run at least three 
times in succession.


• File system had 10% free 
space reserve.


• Halved performance with 
full file system.

Filesystem Type Processor and 
bus measured Speed (KBytes/s) Read bandwidth (%) % CPU

Old 1024 750/UNIBUS 29 3 11

New 4096/1024 750/UNIBUS 221 22 43

New 8192/1024 750/UNIBUS 233 24 29

New 4096/1024 750/MASSBUS 466 47 73

New 8192/1024 750/MASSBUS 466 47 54

Data from McKusick, et al. A Fast File System for UNIX



How Much Faster For Writes?

• Tests run on VAX-11/750.


• No data processing by any 
test programs.


• Programs run at least three 
times in succession.


• File system had 10% free 
space reserve.


• Halved performance with 
full file system.

Filesystem Type Processor and 
bus measured Speed (KBytes/s) Write bandwidth (%) % CPU

Old 1024 750/UNIBUS 48 3 29

New 4096/1024 750/UNIBUS 142 14 43

New 8192/1024 750/UNIBUS 215 22 46

New 4096/1024 750/MASSBUS 323 33 94

New 8192/1024 750/MASSBUS 466 47 95

Data from McKusick, et al. A Fast File System for UNIX



Longer File Names

• Maximum file name length: 255


• But they claim this is “nearly arbitrary 
length.”


• Directories allocated in 512-byte 
chunks.


• Each chunk contains an entry.

inumber

entry size

file name length

name

directory entry



Locking Files

• Files are locked for concurrent 
updates.


• Two schemes:


• Hard locking


• Advisory locking ⇒ used in FFS.


• Advisory locking uses shared and 
exclusive locks.

W W RR R W

shared locking exclusive locking



Symbolic Links

• Each file is linked to an inode.


• Files can appear in multiple 
directories.


• UFS only supported hard links.


• Can’t be used across file systems.


• Symbolic links are just files with a 
pathname.


• Link count not incremented.

inode inode

hard symbolic 

data data



Renaming

• Programs that renamed required a 
temporary file.


• UFS required three system calls to 
rename.


• Failure with system or program ⇒ file 
isn’t moved properly.


• May end up with temporary name 
instead.

file



Protecting Users From Other Users

• Users could originally allocate all 
available resources.


• Quotas are set per user to enforce 
limits.


• Capped number of inodes.


• Capped number of data blocks.


• Users reprimanded if they go over 
quota.



A Couple Questions

• How would flash memory affect this file 
system design?


• Were the performed tests rigorous?


• Why didn’t they attempt deadlock 
detection with their advisory file locking?


