
Enhancing Server Availability and Security
Through Failure-Oblivious Computing

JunYi Yu

Memory Errors
- Example

- Invalid pointers
- Out of bounds memory access

- From
- Programmers’ faults
- Attackers

- Damage
- Termination
- Infinite loop
- Unacceptable interaction sequence
- Data Structure Corruption
- Unacceptable results

Current Solution
- Safe Languages use dynamic checks to eliminate such errors

- Intercept and throw an exception
- Java NullPointerException, IndexOutOfBoundsException

- Unsafe Language
- Distinguish, and terminate

Failure-Oblivious Computing
- For invalid read

- Manufacture a value as return value And continue to execute

- For invalid write
- Discard the value And continue to execute

Basic Assumption
- Hypothesis

- At least some programs, this continued execution through memory errors would product
acceptable results

- Simple test to observe the execution of failure-oblivious versions programs
- Acceptable Continued Execution

- Eliminates the security vulnerabilities
- Enables the server to successfully execute

- Acceptable Performance
- Slower but acceptable due to interactive computations.

- Conclusion
- As long as the server’s address space or data structures are not corrupted, continued

execution can produce completely acceptable results.

Why failure-oblivious computing works well?
- Availability: Still provide acceptable service through memory errors.

- As long as the server’s address space or data structures are not corrupted, continued
execution can produce completely acceptable results.

- Security: Buffer-Overrun Problem
- Simply discard invalid out-of-bounds write.
- Attack request ---> anticipated invalid input.

- Acceptable Performance
- Slower but acceptable due to interactive computations.

Implementation
- Checking Code

- Maintain a table {locations: data_units} to find out-of-bounds pointers

- Continuation Code
- When checking code detects an attempt to perform illegal access
- Discard erroneous writes
- Manufactures a sequence of values for erroneous reads

- Redirect the read to preallocated buffer of values
- The generated value should work, avoid step into infinite loop.

- Optional logging
- Track down errors

Experience
- Comparison

- Standard version
- Bounds Check version (safe C compiler)
- Failure Oblivious version

- Security and Resilience
- Produce input that exploits a security vulnerability, observe the behavior after error.

- Performance
- Measure the processing time of request

- Stability
- Use failure oblivious version applications in daily work and try to trigger memory errors in

workload.

Pine: A widely used mail user agent
- Memory Error

- Incorrect calculation for maximum buffer size.

- Security and Resilience
- C heap corruption, segmentation violation
- Safe C termination
- FOC continue to execute, the erroneous form field will be fixed under the hood

- Stability
- Executed successfully through all errors to perform all requests flawlessly.

- Performance

Apache: The most widely used web server
- Memory Error

- Not enough rooms for captures.

- Security and Resilience
- C stack corruption, segmentation violation
- Safe C Create a chile process to handle the error. (Child Process Pool)
- FOC Child process redirected the attacking request to a non existent URL

- Stability
- Running for nine months, executed successfully even under some attacks.

- Performance

Sendmail: A standard mail transfer agent
- Memory Error

- Skip the check to see if the buffer has enough space for lookahead character

- Security and Resilience
- C stack corruption, attackers can cause the server to execute any injected code
- Safe C exit with an error message
- FOC not vulnerable to the attack, the erroneous address will be rejected.

- Stability
- All of the messages were correctly delivered with no problems.

- Performance

Midnight Commander: A file management tool
- Memory Error

- Strcat will write the component names beyond the end of the buffer

- Security and Resilience
- C stack corruption, segmentation violation
- Safe C exit with an error message
- FOC continue to run successfully

- Stability
- Execute successfully, but by logs we know memory errors were triggered.

- Performance

Mutt: A customizable, text-based mail user agent
- Memory Error

- The buffer for UTF-7 name is not long enough

- Security and Resilience
- C stack corruption, segmentation violation
- Safe C exit with an error message
- FOC continue to run successfully

- Stability
- Execute all requests correctly

- Performance

Discussion
- Failure oblivious computing will ignore memory errors and continue to

run. How can we know detailed information about errors? What data
should be logged during memory errors?

- Do we really need Failure Oblivious computing?
- What kind of errors can be ignored during runtime?

