
Log Structured File System

Surya Suresh



Background

● 1990s seeing technology advancements
○ Processors

■ Increases in processor speed

○ Memory

■ Increase in memory size

○ Disk

■ Improvements in cost and capacity

■ Limited performance in transfer bandwidth and access time

● All 3 components are important in file system design



LFS Design Motivation

● Technology and types of workload
○ How can current technological advances improve file system design?

○ Small file access workloads?

○ Large file access workloads?

● Problems with disk performance
○ Can the number of seeks be reduced?

● Problems with existing file systems
○ Data spread out, causing many seeks

○ Synchronous writes



Goals of LFS

● Reduce the number of reads by caching files in main memory

● Cache small write modifications to later persist as one large block to disk

● Persist changes in an append-only fashion

● Have cleaning policies to compact data and free up space



Design Implementation: Indexing Structures

● No bitmap or free list needed



Design Implementation: Log Structure

● Treat disk as a circular buffer, always appending changes

● Broken up into chunks called segments



Segment Cleaning

● Combination of threading and copy and compact techniques were used



Crash Recovery

● Checkpoints
○ Position in log where all file system structures are consistent and complete

○ Checkpoint region updates to contain addresses of these structures

○ Upon reboot, structures will loaded into memory using checkpoint

● Roll Forwards
○ Scan through log segments written after latest checkpoint

○ Helps recover as much data as possible 



Performance Eval: Segment Cleaning Policy

● Cost-benefit policy calculates benefit 

(amount of free space reclaimed and time 

space will be free) and cost (read segment 

and write live data) 

● Helps clean cold segments at higher 

utilization

● Better to clean cold segments than hot 

segments



Performance Eval: Small File Microbenchmark

● Performance for lfs is much higher than ffs 

for creates and deletes, little better for 

reads



Performance Eval: Large File Microbenchmark

● Large file optimizations weren’t in mind

● Seem to perform better apart from rereads



Discussion

● Is the log structured file system a viable design used today?

● What if ffs cached files like lfs did? Do you think it would be better? Worse? Same?

● Is lfs too reliant on the assumption that main memory will soak up reads?


