Improving the Reliability of
Commodity Operating Systems

(SOSP’03)

Presented by Brevan Chun

Outline

N N N N N SN

Motivation

Design
Implementation
Testing & Evaluation
Key Points

Discussion

Motivation

Computer reliability needs to improve

o
o

As the cost of computing drops, the cost of failures increases

Unmanaged systems must be reliable

OS extensions...
increasingly prevalent

[N

o

70% of Linux code
35,000+ Windows XP drivers

account for a large portion of system failures

7x more likely to have code errors in Linux
85% of Windows XP failures

Required Modifications

Approach Hardware | OS | Extension
Capabilities yes yes yes
Microkernels no yes yes
Languages no yes yes
New Driver no yes yes

Architectures
Transactions no no yes
Virtual Machines no no no
Static Analysis no no no
Nooks no no no
Table 1
3

Nooks

- ‘“rather than guaranteeing complete fault tolerance through a new (and incompatible)
OS or driver architecture, our goal is to prevent the vast majority of driver-caused
crashes with little or no change to existing driver and system code”

- Design for fault resistance (not fault tolerance)
- Design for mistakes (not abuse)

- Improve OS reliability with better fault resistance
L Isolation
. Recovery
. Backwards compatibility

Nooks

OS Extensions {

Nooks

Applications Daemons
-‘ | Nooks Recovery
| 1 A n
T T gent
| Linux Kernel
Kernel
3 Service
Nooks Isolation Manager

Kernel

Service
Interposition Interposition
Dri Kernel
rver Kernel Service
Driver Interposition Service

Driver Driver Driver
Device Device Device

Figure 2

Implementation

A. Isolation - protect kernel from extension

failures Source Components # Lines

B. Recovery - automatic recovery Memory Management 1,882

C. Backward compatibility - applicable to Object Tracking 1,454

existing systems Extension Procedure Call 770

Wrappers 14,396

Recovery 1,136

Linux Kernel Changes 924

1. Isolation Miscellaneous 2,074

2. Interposition Total number of lines of code 22,266

3. Object tracking Table 2
4. Recovery

Isolation

- Prevent extension errors from damaging

the kernel

. . . . Ext. 1: R
- Lightweight kernel protection domains Ext2:R | T

. Kernel privilege Kernel: R/W

L Limited write access

. NIM maintains a synchronized copy of the Extension 1 Extension 2

kernel page table (for each ext.) B e | Heap | [Stacks | | [Heap | [Stacks | o i
. e le} Object 110 Object W

- Extension Procedure Call (XPC) Kemel: RW || Bufters || Table ||| Bufters || Table || Kemel: RW

L Resembles LRPCs but instead assumes a
trusted domain & asymmetry .

. nooks driver call & Figure 3: Protection of the kernel address space.
nooks kernel call

G Deferred calls

Interposition

- Provide transparency to extensions

- Wrappers

W Preserve kernel/driver interfaces while
enabling protection

1. Check parameters for validity (w/ object
tracker)

2. Call-by-value-result (copy kernel objects)

3. Use XPC to execute function

Kernel Extension
v v
Wrapper XPC
Copy/Sync. ‘
i Wrapper
Check
Check
v
XPC Copy/Sync.
v v
Extension Kernel

Object Tracking

- Manage the manipulation of kernel objects

- Record all kernel objects in use by extensions

. Studied every object that supported extensions used
L Record the address and association

- Perform garbage collection
. Protection-domain hash table

10

Recovery

- Detect and recover from faults
. Detection through software checks, exceptions, signals
. Flexible recovery policy
L Release resources

- Hardware faults must trigger recovery
. Software faults can return error code or do recovery

- User/program can explicitly trigger recovery

11

Tests

- Linux2.4.18
- 8 extensions

2 sound drivers

4 ethernet drivers

VFAT file system

kHTTPd kernel web server

- Driver stress tests

Play MP3 file
ICMP-ping

TCP streaming

Untar and compilation
Web load generator

| Extension | Purpose
sb SoundBlaster 16 driver
esl371 Ensoniq sound driver
1000 Intel Pro/1000 Gigabit Ethernet driver
pcnet32 AMD PCnet32 10/100 Ethernet driver

3cH9x 3COM 3ch9x series 10/100 Ethernet driver

3c90x 3COM 3c90x series 10/100 Ethernet driver

VFAT Win95 compatible file system
kHTTPd In-kernel Web server

Table 3: The extensions isolated and the function that
each performs. Measurements are reported for exten-
sions shown in bold.

12

Tests

1.

Synthetic fault injection

Nooks eliminated 99% of crashes
System deadlock in remaining cases

System Crashes

200

@ Native @ Nooks

160

120

80

Number of crashes

40

| -

sb

e1000

pcnet32

VFAT

Extension under test

kHTTPd

Figure 6: The reduction in system crashes in 2000 fault-
injection trials (400 for each extension) observed using
Nooks. In total, there were 317 system crashes in the
native configuration and only four system crashes with

Nooks.

13

Tests

Non-fatal Extension Failures

250
2. Non-fatal failures mNative ® Nooks | [l
- Nooks catching exceptions and recovering the 200 -
extensions g
- A“nanny” process or manual invocation to = 150 — &
recover undetected failures “é
2 100 —
£
=
4
50
3. Recovery errors
- VFAT FS is corrupted upon recovery 90% of 0+
the time sb e1000 pcnet32 VFAT kHTTPd
- Nook extension could improve reliability Extension under test

Figure 7: The reduction in non-fatal extension failures
observed using Nooks. In total, there were 512 such
failures in the native configuration and 212 with Nooks.

14

Tests

4. Manually injected errors

Manually modified extensions are detected and recovered by Nooks

5. Latent bugs

Found several bugs in OS extensions under test

15

Performance

- Performance is closely related to XPC frequency

. Low performance comes from high CPU utilization
. TLB misses when changing protection domains
. Object tracking is slow

- Speedup is possible

Benchmark Extension XPC Nooks Native Nooks
Rate Relative CPU CPU

(per sec) || Performance || Util. (%) | Util. (%)
Play-mp3 sb 150 1 4.8 4.6
Receive-stream €1000 (receiver) 8,923 0.92 15.2 15.5
Send-stream €1000 (sender) 60,352 0.91 21.4 39.3
Compile-local VFAT 22,653 0.78 97.5 96.8
Serve-simple-web-page | kHTTPd (server) 61,183 0.44 96.6 96.8
Serve-complex-web-page €1000 (server) 1,960 0.97 90.5 92.6

Table 4: The relative performance of Nooks compared to native Linux for six benchmark tests. CPU utilization is accu-
rate to only a few percent. Relative performance is determined either by comparing latency (Play-mp3, Compile-local)
or throughput (Send-stream, Receive-stream, Serve-simple-web-page, Serve-complex-web-page). The data reflects the

average of three trials with a standard deviation of less than 2%.
16

Key Points

1. Nooks increases system reliability by protecting the OS from driver failures

a. Modest effort to implement in Linux
b. Nooks does not modify extensions
c. Isolating extensions can improve system reliability

2. Nooks makes compromises to maintain compatibility
a. Backward compatibility > fault tolerance

3. Nooks is effective in tests and efficiency is workload dependent

Michael M. Swift, Brian N. Bershad, and Henry M. Levy. 2003. Improving the reliability of commodity operating systems. In Proceedings of
the nineteenth ACM symposium on Operating systems principles (SOSP '03). Association for Computing Machinery, New York, NY, USA, 207-222.
DOI:https://doi.org/10.1145/945445.945466

17

Discussion

1. Is backward compatibility worth the compromises?

2. Is Nooks trying to be too general? Should it just focus on drivers?

a. Non-driver performance is poor

3. What else could be encapsulated by Nooks to provide fault resistance?

YOU KNOW THIS METAL I SPEND MOST oF MY LFE | | BUT TODAY, THE PATTERN

RECTANGLE FULL OF PRESSING BUTTONS TO MAKE | | oF LIGHTS 15 AL WAOWG!
UTTLE LIGHTS? THE PATTERN OF LIGHTS J OHGOD! TRY

\ SOUNDS ITSNOT RUTIONS!

O G?oo Ha?(&’ (

xkcd.com/722

f]

18

