
Improving the Reliability of 
Commodity Operating Systems 

(SOSP’03)

Presented by Brevan Chun

1



Outline
✓ Motivation

✓ Design

✓ Implementation

✓ Testing & Evaluation

✓ Key Points

✓ Discussion

2



Motivation
I. Computer reliability needs to improve

⤷ As the cost of computing drops, the cost of failures increases
⤷ Unmanaged systems must be reliable

II. OS extensions…
⤷ increasingly prevalent

- 70% of Linux code
- 35,000+ Windows XP drivers

⤷ account for a large portion of system failures
- 7x more likely to have code errors in Linux
- 85% of Windows XP failures

3

Table 1



Nooks
- “rather than guaranteeing complete fault tolerance through a new (and incompatible) 

OS or driver architecture, our goal is to prevent the vast majority of driver-caused 
crashes with little or no change to existing driver and system code”

- Design for fault resistance (not fault tolerance)
- Design for mistakes (not abuse)

- Improve OS reliability with better fault resistance
⤷ Isolation
⤷ Recovery
⤷ Backwards compatibility

4



Nooks

5

OS Kernel

Nooks Isolation Manager (NIM)

OS Extensions



Nooks

6
Figure 2



Implementation
A. Isolation - protect kernel from extension 

failures
B. Recovery - automatic recovery
C. Backward compatibility - applicable to 

existing systems

1. Isolation
2. Interposition
3. Object tracking
4. Recovery

7

Table 2



Isolation
- Prevent extension errors from damaging 

the kernel

- Lightweight kernel protection domains
⤷ Kernel privilege
⤷ Limited write access
⤷ NIM maintains a synchronized copy of the 

kernel page table (for each ext.)

- Extension Procedure Call (XPC)
⤷ Resembles LRPCs but instead assumes a 

trusted domain & asymmetry
⤷ nooks_driver_call & 

nooks_kernel_call
⤷ Deferred calls

8



Interposition
- Provide transparency to extensions

- Wrappers
⤷ Preserve kernel/driver interfaces while 

enabling protection

1. Check parameters for validity (w/ object 
tracker)

2. Call-by-value-result (copy kernel objects)
3. Use XPC to execute function

9

Figure 4



Object Tracking
- Manage the manipulation of kernel objects

- Record all kernel objects in use by extensions
⤷ Studied every object that supported extensions used
⤷ Record the address and association

- Perform garbage collection
⤷ Protection-domain hash table

10



Recovery
- Detect and recover from faults

⤷ Detection through software checks, exceptions, signals
⤷ Flexible recovery policy
⤷ Release resources

- Hardware faults must trigger recovery
⤷ Software faults can return error code or do recovery

- User/program can explicitly trigger recovery

11



Tests
- Linux 2.4.18
- 8 extensions

- 2 sound drivers
- 4 ethernet drivers
- VFAT file system
- kHTTPd kernel web server

- Driver stress tests
- Play MP3 file
- ICMP-ping
- TCP streaming
- Untar and compilation
- Web load generator

12



Tests
1. Synthetic fault injection

- Nooks eliminated 99% of crashes
- System deadlock in remaining cases

13



Tests
2. Non-fatal failures

- Nooks catching exceptions and recovering the 
extensions

- A “nanny” process or manual invocation to 
recover undetected failures

3. Recovery errors
- VFAT FS is corrupted upon recovery 90% of 

the time
- Nook extension could improve reliability

14



Tests
4. Manually injected errors

- Manually modified extensions are detected and recovered by Nooks

5. Latent bugs
- Found several bugs in OS extensions under test

15



Performance
- Performance is closely related to XPC frequency

⤷ Low performance comes from high CPU utilization
⤷ TLB misses when changing protection domains
⤷ Object tracking is slow

- Speedup is possible

16



Key Points
1. Nooks increases system reliability by protecting the OS from driver failures

a. Modest effort to implement in Linux
b. Nooks does not modify extensions
c. Isolating extensions can improve system reliability

2. Nooks makes compromises to maintain compatibility
a. Backward compatibility > fault tolerance

3. Nooks is effective in tests and efficiency is workload dependent

Michael M. Swift, Brian N. Bershad, and Henry M. Levy. 2003. Improving the reliability of commodity operating systems. In Proceedings of 
the nineteenth ACM symposium on Operating systems principles (SOSP '03). Association for Computing Machinery, New York, NY, USA, 207–222. 
DOI:https://doi.org/10.1145/945445.945466

17



Discussion
1. Is backward compatibility worth the compromises?

2. Is Nooks trying to be too general? Should it just focus on drivers?
a. Non-driver performance is poor

3. What else could be encapsulated by Nooks to provide fault resistance?

18

xkcd.com/722


