
Eugene Chou (euchou@ucsc.edu)

ReVirt
Virtual machine fault-tolerance for logging and replay.

mailto:euchou@ucsc.edu


Outline

• Motivation 

• Background 

• Design 

• Capabilities 

• Experiments 

• Takeaways and discussion



Deploy now, fix later

• Hard to make code robust against all attack vectors.


• Instead, do analysis after compromise and try to fix code.


• Logs are needed to perform said analysis.


• Current system loggers lack:


• Integrity


• Completeness



Integrity

• Kernel is assumed to be trustworthy (even if it isn’t).


• Locally-stored logs: can be tampered with.


• Remotely-stored logs: can be falsified.


• Logs are intended to be used when system has been compromised.


• And yet it assumes the system is not.



Completeness

• Typically not enough information stored for analysis.


• Can’t accurately replay without knowing exactly what happened.


• Deterministic and non-deterministic events should be stored.


• Bugs tend to propagate from non-deterministic behavior.


• E.g. time-of-use race conditions.



Goals and approach

• Log with integrity and completeness.


• Run target OS as guest OS in a virtual 
machine.


• Separate logger domain from target OS 
domain.


• Works even if target OS is compromised to 
begin with.


• Need to trust virtual machine monitor (VMM).

guest 
app

guest 
app

guest 
app

guest 
app

guest OS

virtual machine monitor

host OS



ReVirt and the UMLinux VM

• ReVirt is a set of modifications to some host.


• UMLinux runs as a single process on the 
host.


• VMM is called before/after every syscall and 
signal. 

• OS-on-OS: guest OS runs on host OS.


• Guest OS drivers use host system calls 
and signals.


• Direct-on-OS: target apps run on host OS.

guest 
app

Linux 2.4.18

UMLinux

Linux 2.4.18

0xffffffff

0x00000000

0x6fffffff
0x70000000

0xc0000000
0xbfffffff



What is trusted?

• Trusted Computing Base (TCB): all hardware/
software that is critical to the safety of some 
application.


• UMLinux TCB:


1. VMM kernel module


2. Host OS


• Direct-on-host: attacker can use host OS 
functionality freely.


• OS-on-OS: attacker has limited functionality in 
guest OS.


• Not as much impact on host OS.

guest 
app

guest 
app

guest 
app

guest 
app

guest OS

virtual machine monitor

host OS

trusted

untrusted



Why OS-on-OS?

• Direct-on-host not as secure.


• Also harder to log/replay all host processes.


• Easier to deal with one host process (the VM).


• Hard to replay scheduling between host 
processes.


• Kernel doesn’t execute deterministically.


• Affects instruction counts.


• Weaver et al. - Non-Determinism and Overcount 
on Modern Performance Counter Implementations



Privileges

• VMM must distinguish guest 
application and guest kernel 
syscalls.


• Track virtual privilege level in VMM.


• Set to kernel for guest kernel.


• Set to user for guest application.


• Guest application syscall redirected 
to guest kernel syscall trap handler.


• Guest kernel syscall is verified and 
passed to host kernel.

guest 
app

guest 
app

guest 
app

guest 
app

guest OS

virtual machine monitor

host OS

syscall

(trapped)

kernel or user?

SIGUSR1



Logging in ReVirt

• Logging used for state recovery, and for replay.


• Initial state is recorded (checkpoint).


• Logs stored in circular buffer in host kernel 
memory.


• Periodically written to log file by a daemon 
(rlogd).


• Some deterministic events aren’t logged.


• Most non-deterministic events are logged.


• Interrupts, network activity, user input, etc.

E1 E2 E3 E4



Logging non-deterministic events

• Non-deterministic events that don’t affect VM execution aren’t logged.


• E.g. some host hardware interrupts, host process scheduling.


• Must log input from external entities and async virtual interrupts.


• Asynchronous interrupt: interrupts created at arbitrary times during 
execution, usually by external hardware.


• ReVirt logs program counter and number of branches since last interrupt.



Replay interrupt delivery

• New async virtual interrupts blocked during replay.


• Old async virtual interrupts played back like they 
occurred during logging.


• To find instruction to deliver async virtual interrupt:


• Phase 1 

• Generate interrupt after most branches in 
scheduling interval (modify branch_retired).


• Phase 2 

• Set breakpoint on target instruction.


• Compare current number of branches with 
expected amount.

0

1 1

1

2 21

1

0



Cooperative logging

• A lot of log data may go to network 
messaging.


• One computer’s send is another’s 
receive.


• Don’t log data on cooperating receiver.


• Just log identity of sending 
computer and log sequence number.


• Not yet implemented in ReVirt.

B C

C’s Log 

(B, 1) 
(A, 1) 
(B, 2) 
(A, 2) 
(A, 3) 
(B, 3)

A

1

3

2

1

2

3



Experiments

• ReVirt allows admins to switch to live execution during replay.


• Can’t hop back into replay afterwards.


• Experiments ran on 5-workloads:


• POV-Ray: ray-tracing program


• kernel-build: compiles Linux 2.4.18 kernel


• NFS kernel-build: compiles Linux 2.4.18 kernel and stores it on NFS server.


• SPECweb99: benchmark used on 2.0.36 Apache web server


• Daily use: email, editing, word processing, web browsing.



Virtual machine overhead

• Little overhead for interactive tasks.


• Kernel builds take longer due to 
syscalls.


• Requires trap by VMM and signal 
to guest kernel.

Dunlap et al. - ReVirt: Enabling Intrusion analysis through Virtual-Machine Logging and Replay



Replay correctness

• Does the replay match up exactly with what happened?


• Error checking added to monitor any deviations from original execution.


• All register values and branch_retired counter logged.


• Micro-benchmarks (each run 5 times):


1. Two processes increment a shared variable and print its value.


2. A process increments a variable in a loop, printing the value on interrupt.


• Macro-bechmark:


• Boot computer, start window manager, build two applications on remote NFS server.



Time and space overhead

• Mostly deterministic workloads 
generate small logs (POV-ray).


• NFS kernel-build and 
SPECweb99 require logging of 
network packets.


• Would perform like kernel-
build with cooperative logging.


• Replay time occasionally faster 
than original runtime.


• Idle periods are skipped.

Dunlap et al. - ReVirt: Enabling Intrusion analysis through Virtual-Machine Logging and Replay



Analyzing a real attack

• Log and replay ptrace race 
condition in Linux kernel < 2.2.19.


• Non-deterministic attack.


• ptrace allows process to attack 
to another and modify execution 
state and memory.


• Race condition exploited to 
attack to setuid and gain 
elevated privilege.

Linux kernel contains race condition via ptrace/procfs/execve - Vulnerability Note VU#176888



Takeaways

• Use logging to record execution and enable playback.


• Decouple logger from target OS domain.


• Record non-deterministic events to replay non-deterministic attacks.


• Need to have some level of trust (TCB) in VMM and host OS.



Discussion 

• Is ReVirt really suitable for use day-to-day use?


• Its use-case seems to be more niche.


• Is there a minimum size to the trusted computing base?


• What things must you be able to trust?


• Could an attacker produce a process with so much non-deterministic event-
logging that the host system runs out of log space?


