
GPUHarbor: Testing GPU Memory Consistency at Large
(Experience Paper)

Reese Levine

UC Santa Cruz

USA

Mingun Cho

UC Davis

USA

Devon McKee

UC Santa Cruz

USA

Andrew Quinn

UC Santa Cruz

USA

Tyler Sorensen

UC Santa Cruz

USA

ABSTRACT
Memory consistency specifications (MCSs) are a difficult, yet criti-

cal, part of a concurrent programming framework. Existing MCS

testing tools are not immediately accessible, and thus, they have

only been applied to a limited number of platforms. However, in

the post-Dennard scaling landscape, there has been an explosion of

new architectures and frameworks, especially for GPUs. Studying

the shared memory behaviors of different devices (across vendors

and architecture generations) is important to ensure conformance

and to understand the extent that devices show different behaviors.

In this paper, we present GPUHarbor, a widescale GPU MCS

testing tool. GPUHarbor has two interfaces: a web interface and an

Android app. Using GPUHarbor, we deployed a testing campaign

that checks conformance and characterizes weak behaviors. We

advertised GPUHarbor on forums and social media, allowing us

to collect testing data from 106 devices, spanning seven vendors.

In terms of devices tested, this constitutes the largest study on

weak memory behaviors by at least 10×, and our conformance tests

identified two new bugs on embedded Arm and NVIDIA devices.

Analyzing our characterization data yields many insights, including

quantifying and comparing weak behavior occurrence rates (e.g.,

AMD GPUs show 25.3× more weak behaviors on average than

Intel). We conclude with a discussion of the impact our results have

on software development for these performance-critical devices.

CCS CONCEPTS
• Software and its engineering→ Empirical software valida-
tion; • Computing methodologies→ Parallel programming
languages; Graphics processors.

KEYWORDS
memory consistency, GPUs, mutation testing

ACM Reference Format:
Reese Levine,MingunCho, DevonMcKee, AndrewQuinn, and Tyler Sorensen.

2023. GPUHarbor: Testing GPU Memory Consistency at Large (Experience

Paper). In Proceedings of the 32nd ACM SIGSOFT International Symposium
on Software Testing and Analysis (ISSTA ’23), July 17–21, 2023, Seattle, WA,

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0221-1/23/07.

https://doi.org/10.1145/3597926.3598095

Table 1: The GPU vendors and devices included in the study.
Overall, we ran almost 400 billion iterations of weakmemory
tests on 106 devices, of which 58 we have confirmed to be
unique models. We observed over 35 million weak behaviors,
with the rates per device and vendor characterized in Sec. 4.

Framework Vendor Devices (Unique) Tests Weak Behaviors

WebGPU

Intel 26 (17) 105.3b 0.2m

Apple 26 (6) 104.4b 9.7m

NVIDIA 31 (18) 125.3b 10.8m

AMD 15 (9) 60.4b 14.7m

Vulkan

Arm 2 (2) 51.6m 18.2k

Qualcomm 4 (4) 17.6m 27.2k

Imagination 1 (1) 6.1m 0

NVIDIA 1 (1) 49.6m 454

Total: 106 (58) 395.5b 35.4m

United States. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/

3597926.3598095

1 INTRODUCTION
The end of Dennard Scaling has brought about an explosion ofmulti-

core architectures that improve application performance through

large-scale parallelism. Graphics Processing Units (GPUs) exem-

plify this trend and are now integral components of many systems,

from smartphones to large HPC supercomputers. While GPUs were

previously primarily used for graphics applications, they now have

applications in a variety of areas including machine learning [42]

and particle simulations used in drug development [38]. GPUs are

even being used for security and safety-critical applications such

as encryption [37] and self-driving cars [13], making safety and

correctness an increasing concern on these devices.

Because GPUs are produced by several vendors (NVIDIA, AMD,

Intel, etc.) and evolve rapidly, many different devices are currently

deployed. These devices vary both in their performance, as well

as their functional behavior. To account for this, the community

has developed portable GPU programming frameworks, such as

Vulkan [22] and WebGPU [51], as unified abstractions to target

these diverse devices.

Memory consistency specifications (MCSs), which define the se-

mantics of shared memory operations, are an important part of

these abstractions. While MCSs provide many guarantees, such

as atomicity and coherence, they often allow an architecture to

implement weak memory behaviors to improve efficiency [34]. For

example, x86’s relaxed MCS [44] allows store buffering behaviors,

https://doi.org/10.1145/3597926.3598095
https://doi.org/10.1145/3597926.3598095
https://doi.org/10.1145/3597926.3598095

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Reese Levine, Mingun Cho, Devon McKee, AndrewQuinn, and Tyler Sorensen

in which a processor may buffer the stored values before flushing

them to a shared memory location; as a result, another processor

may observe the buffered store occurring out-of-order.

Because relaxed MCSs can be complex and nuanced, there is

a history of platforms (compilers and architectures) containing

MCS conformance bugs [1, 4, 25, 30, 31]. That is, the MCS provides

a guarantee that the implementation does not honor. Due to the

non-determinism of concurrency, MCS bugs may occur extremely

rarely, or only when provoked, e.g., by side-channel stress [46].

Apart from conformance, a device’s weak behavior profile, i.e., the
frequency at which allowed weak behaviors occur and how system

stress influences this frequency, is also a useful metric. For example,

this can be useful in developing conformance testing strategies [28]

and enables developers to reason about tradeoffs between accuracy

and performance in approximate computing that judiciously elides

synchronization [35, 41, 43].

Unfortunately, previous GPU testing work had limited scope,

testing only a small number of devices [25, 28], with the largest

study testing eight devices [1]. These approaches did not scale due

to the difficulty of portable GPU application development and de-

ployment, e.g., while frameworks like OpenCL [21] are portable in

theory, there are many difficulties in practice [47]. Consequently,

little is known about the MCS conformance and weak behavior

profiles at large. This is especially problematic as portable GPU

frameworks depend uponmany layers and environments (e.g., archi-

tectures, compilers, runtimes, operating systems, etc.); it is difficult

to extrapolate insights from a small number of platforms tested in

controlled environments to the diverse universe of deployed GPUs.

1.1 GPUHarbor
In this paper, we present a large-scale study of GPU MCS testing,

which, to the best of our knowledge, tests 10× more devices than

previous studies. Figure 1 summarizes our study, including the num-

ber of GPUs that we tested (106), broken down by two frameworks

(WebGPU and Vulkan) and seven vendors (Intel, Apple, NVIDIA,

AMD, Arm, Qualcomm, and Imagination). This scale is empowered

by GPUHarbor, a new cross-platform GPU MCS testing tool suite.

GPUHarbor includes two front-ends, a browser web app (using

WebGPU) and an Android app (using Vulkan). We advertised our

web app on campus forums and social media to obtain a significant

number of WebGPU results. We test much fewer Vulkan devices as

our Android app is not yet widely accessible on the Google Play

Store, but in Sec. 7 we discuss how we will enable larger mobile

studies on both Android and iOS.

GPUHarbor uses litmus tests, small concurrent programs that

check for load/store reordering corresponding to weak memory

behaviors. Current GPU MCS testing tools execute litmus tests

many times in succession to check conformance and characterize

devices [1, 25, 46]. However, these prior approaches have several

shortcomings: (1) they are implemented in vendor-specific lan-

guages, e.g., CUDA; (2) they require expert users to build, configure,

and execute tests on each device, e.g., as is the case for OpenCL;

or (3) litmus tests were embedded in vendor-specific stress testing

environments and thus, would not execute efficiently on other de-

vices. This cumbersome litmus testing workflow made it infeasible

to perform a large-scale study. In contrast, GPUHarbor defines lit-

mus tests using a neutral configuration (written in JSON), which

it compiles to a portable shading language (WGSL [50] or SPIR-

V [20]). The resulting litmus testing application then tunes the

testing stress automatically. The net result is a fully automated and

easy-to-use tool for GPU MCS testing at large. Table 1 shows how

many weak memory litmus test iterations were run and how many

weak behaviors were observed in our study.

We perform the following two investigations on our data set:

(1) we examine the results of MCS conformance tests and find

two new bugs in mobile device GPUs from Arm and NVIDIA, and

(2) we characterize weak memory behavior profiles, e.g., the rates

at which allowed weak behaviors occur and their sensitivity to

system stress. Additionally, we provide several analyses on the weak

memory profiles. First, we comment on how per-vendor average

profiles compare; for example, AMD shows an average percentage

of 1.5%weak behaviors, while Intel shows only .06%.We then cluster

different GPUs and find that, surprisingly, cross-vendor devices

often have similar profiles, while devices from the same vendor
sometimes have vastly different profiles. Finally, we discuss how

the wide range of different profiles we observed can impact testing

strategies and the implementation of synchronization algorithms.

Contributions. In summary, our contributions are:

(1) Tooling: We introduce GPUHarbor, a new cross-platform

GPU MCS testing tool with accessible web and Android

interfaces (Sec. 3).

(2) GPU MCS Weak Behavior Characterization: We con-

duct a large GPU weak memory characterization and confor-

mance testing study, collecting data from 106 GPUs (Sec. 4).

(3) Conformance Testing and Analysis:
(a) We discover two unreported bugs in Arm and NVIDIA

devices (Sec. 5.1).

(b) We analyze statistical similarities across GPUs and de-

scribe the impact on testing strategies and device finger-

printing (Sec. 5.2).

(c) We discuss how weak behavior profiles impact the de-

velopment and testing of synchronization algorithms on

GPUs (Sec. 5.3).

(4) Lessons Learned: We detail the lessons learned while de-

signing and running this study, providing a guide to other

researchers seeking to implement similar large experimental

explorations (Sec. 6).

All of the data we collected as part of our study, and the tools

used to do so, are available as part of our artifact [27]. In addition,

GPUHarbor’s web interface is hosted by UC Santa Cruz and can be

found at https://gpuharbor.ucsc.edu/webgpu-mem-testing/.

2 BACKGROUND
In this section we provide an overview of memory consistency spec-

ifications (Sec. 2.1), define the litmus tests we run and how they

allow reasoning about relaxed memory models (Sec. 2.2), and intro-

duce GPU programming concepts from the WebGPU and Vulkan

GPU frameworks, including descriptions of their MCSs (Sec. 2.3).

https://gpuharbor.ucsc.edu/webgpu-mem-testing/

GPUHarbor: Testing GPU Memory Consistency at Large (Experience Paper) ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

2.1 Memory Consistency Specifications
Today, the memory consistency specifications for architectures,

e.g., x86 [44], and languages, e.g., C++ [7], are formalized using

mathematical logic. This formalism represents shared memory

program executions as a set of memory operations, e.g., reads,

writes, and read-modify-writes, and relations between these events,

e.g., happens-before (hb). Allowed executions constrain define con-

straints on some of these relations, e.g., hb is required to be acyclic.

The strongest MCS is sequential consistency (SC) [26], which states

that concurrent program executions must correspond to a total

hb order such that the order respects the per-thread program or-

der, allowing events from multiple threads to be interleaved. In

relaxed MCSs, the hb relation is a partial order, allowing various

weak behaviors (i.e. executions that are not SC) if shared memory

operations on multiple threads are not synchronized.

There is a large body of work focused on formalizing MCSs,

including a model for Vulkan’s [19]. WebGPU generally follows the

Vulkan MCS, with prior work [28] formalizing portions of its MCS

necessary for reasoning about simple litmus tests. However, for this

work it is not necessary to understand the full formalization of the

WebGPU and Vulkan MCSs, so we describe the necessary subset of

the specification briefly and informally. In addition, we follow prior

work on MCS testing [25, 28] and consider only trivially data-race-
free programs where all operations are atomic, as our intention

is not to test the behavior of programs with undefined semantics

(caused by data races).

Our Target MCS. Because Vulkan is one of several backends to

WebGPU, theMCS forWebGPU is a subset of theMCS for Vulkan. In

order to provide a unified study across both frameworks, we target

only the WebGPU MCS, which we then map to its Vulkan coun-

terpart. The WebGPU MCS provides very little inter-workgroup

synchronization due to the diversity of backends it targets, with

the weakest backend being Apple’s Metal [6], which provides only

relaxed atomic operations. These operations, which come from the

C++ memory model [7], compile to plain loads/stores at the archi-

tectural level, but at the language level provide few synchronization

guarantees between threads.

The one inter-workgroup MCS property provided by WebGPU

atomics is coherence, which states that memory accesses to a single

location must respect sequential consistency; sometimes called SC-

per-loc [4]. However, memory accesses to disjoint addresses are

allowed to be reordered. Mapping theseWebGPU atomics to Vulkan

is straightforward; all WebGPU atomic accesses are simply mapped

to SPIR-V atomic accesses with a relaxed memory order. While

our testing campaign considers only relaxed memory accesses,

Vulkan allows additional memory orders; specifically, acquire and
release. While the precise semantics of these memory orders is

complex, especially when combined with other relaxed atomics,

we note that they are required to implement the required syn-

chronization in many common concurrency constructs, such as a

mutex.
1
The lock() method needs to execute an acquire atomic

operation when the mutex is obtained and the unlock() method

1
WebGPU does not provide inter-workgroup acquire and release memory orders,

so it is not currently possible to implement a well-specified mutex in WebGPU.

Initialize: x = 0; y = 0;

thread 0 thread 1

a S(x, 1); c r0 = L(y);
b S(y, 1); d r1 = L(x);

Weak Behavior: r0 == 1 && r1 == 0

(a) MP Litmus Test

Initialize: x = 0;

thread 0 thread 1

a S(x, 1); c r0 = L(x);
b S(x, 2); d r1 = L(x);

Weak Behavior: r0 > r1

(b) MP-CO Litmus Test

Figure 1: The weak behavior in the MP litmus test is allowed
bymany relaxedMCSs. On the other hand, theweak behavior
in the closely-related MP-CO litmus test violates coherency
and is disallowed by every major MCS that we know of. Prior
work [28] has shown that tuning system stress for the al-
lowedMP test can be used to design effective tests for finding
bugs related to the MP-CO test.

requires executing a release atomic operation. If a mutex is im-

plemented without these memory orders, it is possible to violate

mutual exclusion, as we show in Sec. 5.3.

2.2 Litmus Tests
Litmus tests are small concurrent programs that illustrate [45],

compare [29, 48], and empirically test [1, 3, 25] MCSs. These tests

contain a condition on the final state of local variables and memory

values that checks for weak behaviors. For example, the program in

Fig. 1a is known as the message passing (MP) litmus test, in which

one thread writes to a memory location x (a) followed by a write

to y (b), while a second thread reads from y (c) and then x (d).

As mentioned earlier, in this work, we assume that all of the

memory operations in a litmus test are atomic, which in languages

that follow the C11 style MCS [7] ensures that the semantics of

shared memory operations are well-defined. Additionally, unless

explicitly noted otherwise, we consider these atomic operations

to have a relaxed memory order, which allows compilers and

hardware to aggressively optimize their execution.

The condition underneath the test shows an outcome that only

occurs in relaxed executions. In this case, the behavior corresponds

to an execution where the read of y returns 1 but the read of x
returns 0. While some relaxed MCSs do not allow this behavior,

e.g., the x86 MCS [44], many other relaxed MCSs, especially ones

for languages like C++ [7], do allow the behavior. As mentioned

earlier, our target WebGPU MCS does not provide any guarantees

outside of coherence, and thus the two memory accesses per thread

(which target disjoint addresses) are allowed to be reordered. In

cases where the weak behavior is allowed (both by the MCS and the

implementation), the rate at which this behavior is observed on real

systems is highly dependent on system stress. Early GPU application

development work did not observe any weak behaviors, despite

specifications allowing them [12]. However, later work added spe-

cialized system stress around the test execution and revealed many

cases of surprising weak behaviors [1, 46].

Executing litmus tests on deployed systems can be used for two

purposes, which we will illustrate using a litmus test 𝐿 that can

exhibit a weak behavior execution 𝑒 , and an MCS 𝑆 .

(1) Conformance testing: if 𝑒 is disallowed in 𝑆 then we can

check implementations of 𝑆 . That is, if a platform 𝑝 claims

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Reese Levine, Mingun Cho, Devon McKee, AndrewQuinn, and Tyler Sorensen

LitGen
(Python)

OpenCL
Kernel

WGSL
Shader

GPUHarbor
Web Interface

(React/WebGPU)

SPIR-V
Shader

GPUHarbor
Android App
(Java/Vulkan)

REST API

Manual

Litmus
Config
(JSON) Analysis

Scripts
(Python)

Weak Behavior
Characterization

Bug Reports

Key

GPUHarbor Tools

GPUHarbor Functions

Existing Tools

Litmus Test Representations

EasyVk

Explore Tune/
Conform

Clspv

SQLite
Database

1

3

5

4

8

2

6 7
9

Figure 2: An overview of the tooling flow for GPUHarbor, with WebGPU and Vulkan MCS targets.

to implement 𝑆 , then we can execute 𝐿 many times on 𝑝 ,

checking for 𝑒 . The observation of 𝑒 would indicate a bug.

(2) Profiling weak behaviors: if 𝑒 is allowed on 𝑆 , and a plat-

form 𝑝 claims to implement 𝑆 , then we can execute 𝐿 many

times on 𝑝 to understand the extent to which that platform

allows 𝑒 . In some cases, 𝑝 might not show 𝑒 empirically, or

maybe 𝑒 appears more frequently under a certain configura-

tion of system stress. A collection of this type of data creates

a weak memory profile for 𝑝 .

Prior work [28] has utilized weak memory profiles in highly

tuned conformance testing. In that work, it was shown that allowed

MP executions could be used to tune system stress for disallowed

behaviors in associated conformance tests. For example, theMP-
CO litmus test, shown in Fig. 1b, is similar toMP, except that every
memory access targets the same memory address and different

values are stored (required to identify a weak behavior). Given that

there is only one address used in MP-CO, the weak behavior in

this test is disallowed under coherence, and thus in the WebGPU

MCS. If certain system stress reveals weak behaviors in the allowed

MP litmus test, then, in the case where a platform contains a bug, it

is likely to reveal the buggy behavior in the MP-CO conformance

test. In Sec. 3.1 we show the litmus tests used in our experimental

campaign, and in Sec. 5.1 we illustrate the effectiveness of the

approach of prior work [28] by describing two new bugs.

2.3 GPU Programming
This study targets two cross-platform GPU frameworks, Vulkan

and WebGPU. Vulkan is a modern graphics and compute API that

can be run on many Linux, Android, and Windows devices, and

can target Apple devices through the MoltenVK [23] portability

layer. WebGPU is designed to run in browser environments and is

compiled to different backends depending on the operating system

of the device (Direct3D [33] onWindows, Vulkan on Linux/Android,

and Metal [6] on Apple devices).

Both Vulkan and WebGPU define their own programming lan-

guages, called SPIR-V and WGSL respectively. Programs written in

these languages are called shaders and run on the GPU, while the

APIs used to allocate memory on the GPU and dispatch shaders

are written in the language of the host device, commonly C++ for

Vulkan and JavaScript for WebGPU. In this work, we discuss the

complexities of writing tools that must be implemented in differ-

ent languages and how future development (Sec. 7) could ease the

difficulty of cross-platform GPU MCS testing.

GPU ExecutionModel. GPUs run thousands of concurrent threads
(invocations in Vulkan and WebGPU) organized hierarchically and

executed in a single-instruction, multiple-thread (SIMT) format.

To support this execution model, in WGSL and SPIR-V threads

are partitioned into discrete workgroups, with built-in identifiers

used to query a thread’s workgroup id. Workgroups are limited

in size (e.g. 1024 in CUDA, with limits varying depending on the

device in WGSL/SPIR-V) and have access to an efficient shared

memory region. A group of threads organized into workgroups

and running on the device is called a grid, with the number of

threads per workgroup and the number of workgroups specified

at dispatch time. All threads in the same dispatch have access to a

global memory region.

While our target MCS was discussed in the previous section, we

note that GPU atomic operations can be annotated with a memory
scope. Two common scopes in Vulkan and WebGPU are workgroup,
which specifies that synchronization occurs only between threads

in the same workgroup, and device, which specifies that synchro-

nization occurs across all threads executing on the device.

Threads within workgroups generally have access to efficient

primitive barrier operations, e.g., workgroupBarrier in WebGPU.

However, highly optimized implementations of important paral-

lel routines (e.g. inter-workgroup prefix scans [32]) rely on fine-

grained inter-workgroup communication. Thus, like prior work [25,

28], we see a more imminent need for testing MCS properties at

the inter-workgroup level; which we keep as our sole scope for

this work. Similarly, GPU programs have several different memory

types, e.g. whether it is shared-workgroup memory or device-wide

memory. Given that we consider only inter-workgroup interactions,

we only consider device-wide memory.

3 SYSTEM OVERVIEW
Building on approaches in prior work [28], we discuss our testing

campaign (Sec. 3.1) and the development of our MCS testing tools

that are easily accessible on a wide range of devices, summarized in

Fig. 2. We overview each stage of the tooling, starting with litmus

test generation (Sec. 3.2), moving on to the design of GPUHarbor’s

GPUHarbor: Testing GPU Memory Consistency at Large (Experience Paper) ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

Initialize: x = 0; y = 0;

thread 0 thread 1

a r0 = L(x); c r1 = L(y);
b S(y, 1); d S(x, 1);

Weak Behavior: r0 == 1 && r1 == 1

(a) Load Buffer (LB)

Initialize: x = 0; y = 0;

thread 0 thread 1

a S(x, 1); c S(y, 1);
b r0 = L(y); d r1 = L(x);

Weak Behavior: r0 == 0 && r1 == 0

(b) Store Buffer (SB)

Initialize: x = 0; y = 0;

thread 0 thread 1

a S(x, 2); c r0 = L(y);
b S(y, 1); d S(x, 1);

Weak Behavior: r0 == 1 && x == 2

(c) Store (S)

Initialize: x = 0; y = 0;

thread 0 thread 1

a S(x, 1); c S(y, 2);
b S(y, 1); d r0 = L(x);

Weak Behavior: r0 == 0 && y == 2

(d) Read (R)

Initialize: x = 0; y = 0;

thread 0 thread 1

a S(x, 2); c S(y, 2);
b S(y, 1); d S(x, 1);

Weak Behavior: x == 2 && y == 2

(e) 2+2 Write (2+2W)

Figure 3: These litmus tests, along with MP from Fig. 1a, represent six classic weak behaviors allowed by relaxed MCSs. S and L
signify a relaxed atomic store and load, respectively.

web interface and Android app (Sec. 3.3). We end the section by

describing our data collection process (Sec. 3.4).

3.1 Litmus Test Selection
The tests we utilize in our study build off of the MCS mutation

testing strategy used in [28]. We use 32 mutants, out of which 24

are litmus tests with weak behaviors allowed by the WebGPU MCS.

The mutants are used to find effective system stress to then run the

conformance tests. Our results analysis focuses on characterizing

the rates of weak behaviors of six of themutants, one of which isMP
(Fig. 1a), with the other five shown in Fig. 3. These tests enumerate

all the combinations of four instructions on two threads that can

lead to weak behaviors. Thus, they capture testing for all pair-wise

memory reorderings. For example, the SB test checks for store-load

reorderings, while the LB test checks for load-store reorderings.

Additionally, these tests capture synchronization patterns used in

common concurrency algorithms like a compare-and-swap spinlock.

Because of this, prior work has also focused on these tests and has

shown their utility in finding bugs in both applications and MCS

implementations [25, 46].

Once the mutants are run, we use the weak behavior profile

of a device to determine an effective system stress configuration

to run conformance tests under. We utilize the 20 conformance

tests from [28]. As a concrete illustration using one mutant and

conformance test, we would run the MP test under many different

system stress configurations to build a weak behavior profile. We

then use the most effective configuration at revealing MP weak

behaviors to run a closely related conformance test, e.g.,MP-CO
(Fig. 1b). This approach was shown to be effective at finding bugs in

prior work [28] andwe further show its effectiveness by discovering

two new bugs: a violation of MP-CO onArm devices and a violation

of MP-CO on an NVIDIA device (see Sec. 5.1).

3.2 Litmus Test Generation
We now discuss our tooling that generates and runs our testing

and characterization campaign. Litmus test behaviors are non-

deterministic and sensitive to system stress. Due to this, the shaders

that run the litmus tests contain not only the actual litmus test in-

structions, like those in Fig. 3, but take in a number of parameters

and provide functions that are used to construct system stress.

To provide a standardized interface for defining litmus tests in

different GPU languages, we built a tool, Litmus Generator (LitGen,

1 in Fig. 2), which is similar to previous litmus testing tools [3] but

is specifically targeted to create GPU programs with system stress,

as was shown is necessary for testing GPUMCSs [1, 25, 28]. LitGen

takes litmus tests that are written in an abstract format, currently

JSON, that specify the actions of the test (e.g. loads and stores)

and the possible behaviors of the test, with a special designation

being given to weak behaviors. The tests used in this work were all

manually specified, as they are relatively small, but LitGen could

be integrated with other tools that use formal models to generate

litmus tests, e.g., [2, 48], which would provide more automation

and account for more complicated tests and MCSs. LitGen outputs

a test shader, which runs the test alongside system stress developed

in prior work [25, 28], and a result shader, which aggregates the

observed behaviors of the test.

The result shader is generated separately from the test shader

for several reasons:

(1) Some tests, like 2+2W (Fig. 3e), examine memory locations

for weak behaviors after all threads have finished executing

the test. To avoid relying on synchronization features (some

of which we are trying to test), we instead pass the test

memory buffer into a new result aggregation shader, which

executes after the test shader.

(2) LitGen implements parallel testing, described in [28], which

runs thousands of instances of each litmus test concurrently.

Thus, it is natural to leverage the inherent parallelism of the

GPU to also aggregate the many results, which otherwise

may be time-consuming to do on the CPU, especially since

it requires copying memory from the GPU to the CPU.

Currently, two backends exist for LitGen. The tool outputs

WGSL shaders directly, as WGSL is a text-based language. SPIR-V,

on the other hand, is a low-level representation similar to LLVM,

increasing its flexibility but making code generation more complex.

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Reese Levine, Mingun Cho, Devon McKee, AndrewQuinn, and Tyler Sorensen

Figure 4: A screenshot ofGPUHarbor’sweb interface showing
the “Explore” page for the MP litmus test.

Therefore, for Vulkan backends LitGen first outputs OpenCL, a

compute-focused GPU language, which is similar in syntax to C++.

Then, it utilizes Clspv [15] (2), a prototype compiler from OpenCL

to SPIR-V, to generate the shader used in the Android app.

AsWebGPU is primarily browser-based while Vulkan runs on na-

tive devices, we currently maintain litmus testing driver programs

in two languages. WebGPU exposes a relatively simple JavaScript

API, on which we build our web interface (3). Vulkan’s native

C/C++ API is more complex, so to simplify this process, we have

built a Vulkan compute wrapper which we call EasyVk (4). This

library exposes a simple interface where buffers are defined and

shaders dispatched to the GPU in a few lines of code. EasyVk is

integrated into the Android app and included as part of our artifact.

3.3 GPUHarbor Design
Previous GPU MCS studies have been limited in reach due to the

difficulty in deploying cross-platform GPU applications [47]. One

of the reasons for this is the fractured landscape of GPU develop-

ment. NVIDIA’s popular CUDA framework [36] is used for many

data science applications but is only supported on NVIDIA GPUs.

OpenCL [21] was introduced in 2009 by Apple as a cross-platform

standard; however, today Apple no longer supports OpenCL and

instead requires developers to use their proprietary Metal API [6].

Another issue with previous GPU MCS testing approaches has

been a reliance on expert users to run testing campaigns. For ex-

ample, using OpenCL would require users to install the required

drivers, build the application under a specific environment, etc. To

collect data from the diversity of devices necessary to gain confi-

dence in cross-platform GPU frameworks, tools must minimize the

friction in setting up and running tests. The tools we introduce here

are easily distributed applications with a user-friendly interface on

top of new GPU frameworks so that even non-technical users can

collect data on their devices and submit results for analysis. To this

end, we introduce GPUHarbor: a GPU MCS testing tool with two

widely supported and accessible frontends, a web interface and an

Android app (3 and 5 in Fig. 2).

GPUHarbor’s web interface and Android app have a common

design with two functions: exploring (6) and tuning/conforming

(7). “Explore” pages run specific litmus tests, display histograms

of results, and provide the ability to adjust various parameters

that control system stress. When tuning and conforming, a set

of tests are chosen to run with multiple random system stress

configurations, searching for configurations that maximize the rate

of weak behaviors and uncover bugs in MCS implementations.

While this study includes the largest collection of data on mobile

GPU MCS behaviors, in Sec. 7 we discuss future work that could

increase the reach of mobile GPU MCS testing even further.

Exploring. Figure 4 shows a screenshot of GPUHarbor’s web

interface explore page for theMP litmus test after the test has been

run with relatively high systems stress on a MacBook Pro with

an integrated Intel Iris GPU. The top of the page (1) includes a

description of the test and pseudocode showing the test instructions.

The right-hand side (2) includes an editable list of the parameters

that define system stress, along with several presets. When the

test is running, the histogram (3) updates in real-time with the

number of times each behavior is observed. The progress bar gives

an estimate of how much longer is left to run, based on the speed

of previous iterations.

The green bars correspond to sequential behaviors, where one

thread runs entirely before the other. The blue bar corresponds to

interleaved behaviors, where actions from each thread are inter-

leaved (e.g. leading to the behavior r0 == 0 && r1 == 1 in the

MP litmus test). The red bar corresponds to weak behaviors; in this

run, threeMPweak behaviors were observed out of over 13 million

test instances, so the histogram shows behaviors (using a log scale,

as weak behaviors are relatively rare).

Tuning and Conforming. Both the web interface and the Android

app can be used to tune system stress, as in [28]. When tuning, a

set of tests can be selected, with presets available for weak mem-

ory tests (e.g. those in Fig. 3) and conformance tests, e.g., to test

coherence. Testing options like the number of configurations, the

maximum number of workgroups, and other parameter overrides

can be modified to run different experiments and check specific

tests without redeploying any code.

To collect data from volunteer users across a diverse set of de-

vices, we strive to minimize the options users have to configure.

This reduces the chances of errors and provides us with a standard-

ized dataset to analyze. The web interface’s tuning page, therefore,

includes a tab that exposes no configuration options, but instead

shows only a few buttons: one button that starts a combined tun-

ing/conformance run with default parameters: and another but-

ton that pulls up a submission form, which submits the results

along with some (optional) contact information. Our results are all

anonymized; contact details were only collected if users wanted

to be informed about the outcome of the study. Before submitting,

users agreed that their anonymized results could be aggregated,

reported on, and released as part of this study.

GPUHarbor: Testing GPU Memory Consistency at Large (Experience Paper) ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

0 15 30 45 60 75 90 120 150

Testing Time (minutes)

0

5

10

15

20

25

30

35

N
um

b
er

of
R

es
ul

ts

Intel

Apple

NVIDIA

AMD

Figure 5: Histogram showing the time spent testing We-
bGPU’s MCS on each device using GPUHarbor’s web inter-
face. Each bin is broken down by vendor.

3.4 Data Collection
To submit test data, the web interface communicates with a backend

service that exposes an API for submitting results and inserting

them into an SQLite database (8 in Fig. 2). The data is then analyzed

using Python scripts (9). The Android app is not yet available on

the app store nor is it integrated with the SQLite backend, so results

are manually copied off of the device for analysis. In Sec. 7 we

discuss how we can reduce the friction for submitting mobile app

results, and thus, increase the reach of future studies. Nevertheless,

our study of eight devices is the largest testing campaign of mobile

GPU MCS behaviors of which we are aware.

While system stress configurations are generated randomly, we

would like to ensure that the configurations run on different devices

are the same for data analysis purposes. That is, if different GPUs are

tested with the same stress configurations, we can compare how the

different devices behaved under the same stress. We ensure this by

integrating a seedable Park-Miller random number generator [39]

into both the web interface and the Android app and using the

same seed when running all of our tuning experiments.

By default, browsers only expose limited information about the

user’s GPU without turning on vendor-specific development flags

due to privacy and security concerns around fingerprinting [52].

In order to have as much information as possible about our data,

we included instructions asking users to temporarily enable flags

so we could collect detailed GPU information. Of the 98 results we

collected, 67 included the exact GPU tested. The other 31 results did

not specify the exact GPU, but included only the vendor and a string

describing the GPU architecture, such as “intel gen-9” or “nvidia

ampere”. All Apple devices reported an architecture of “common-

3”, making it impossible to immediately distinguish M1’s vs M2’s.

However, we show in Sec. 5.2 that our data can be used to infer

device information, hindering the ability of browsers to hide the

specifics of a user’s GPU.

4 INITIAL RESULTS: WEAK BEHAVIOR
CHARACTERIZATION

To collect data from as many sources as possible, we disseminated

the link to GPUHarbor’s web interface to the general public, utiliz-

ing campus forums and social media, and ran the Android app on

eight devices that we could physically access. As shown in Tab. 1,

we collected data from millions of tests; each test used a randomly

generated system stress configuration (we used 50 configurations

on the web interface and 150 on the Android app). In each con-

figuration, tests were run millions of times based on a randomly

generated number of workgroups and threads per workgroup.

To ensure data integrity, we implemented a checksum algorithm

that verified we saw the expected number of overall behaviors

based on the system stress configuration. The testing duration

was also recorded, however, we ran into one issue here. Some

computers went to sleep in the middle of the tests, suspending

the browser’s process and leading to extremely long recorded

test times. To overcome this, we recorded testing time on a per

test/configuration basis; we then filtered the results so as to not

include any test/configuration durations over one minute. We note

that each individual test runs quickly (e.g. in less than 5 seconds),

thus, runs that were over one minute were most likely when the

computer went to sleep. To approximate the length of the test that

was suspended, we used a neighboring test’s time.

One consideration for collecting data from the wider public is

that we cannot afford to run tests for hours at a time. Previous

work targeted only a few devices, running tests on one device

for a minimum of 36 hours [25] or 2 hours [28]. However, asking

volunteer users to leave their browsers and computer open for that

long is impractical and would certainly decrease the number of

submissions. Therefore, we heuristically chose the number of test

environments and iterations per environment, aiming for the tests

to finish in 10-20 minutes.

Figure 5 shows the distribution of testing time on our web in-

terface, broken down by vendor. The results show that NVIDIA

devices were the fastest on average, mostly running all tests in

under 15 minutes. On the other hand, Intel devices ran slower, with

two older Intel GPUs taking over an hour and a half to complete.

In the rest of this section, we analyze our WebGPU and Vulkan

data to characterize the rates at which weak behaviors occur on

devices from different vendors. These initial results motivate three

research questions, which are explored in depth in Sec. 5:

(1) Do MCS bugs exist in the wild, especially in GPUs which

are relatively untested (Sec. 5.1)?

(2) Can our characterization data be used to identify similarities

between GPUs (Sec. 5.2)? If so, then our data can be used to

develop new testing strategies or to expose potential new

browser fingerprinting vulnerabilities.

(3) How can a weak behavior characterization study be used

in programming guides for implementing synchronization

constructs, e.g. mutexes (Sec. 5.3)?

4.1 Weak Behaviors in WebGPU
Figure 6 shows the average rates of observed weak behaviors for

the six litmus tests of Fig. 3 (plus MP) in the test environment that

maximizes the rate on each device broken down by test and vendor.

As described in Fig. 1, we have data from at least 15 devices from

each vendor. The overall testing time across all 98 devices was 31.1

hours, an average of 19 minutes per device.

Devices from all vendors showed weak behaviors on each lit-

mus test. In all but two cases, observing weak behaviors was all or

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Reese Levine, Mingun Cho, Devon McKee, AndrewQuinn, and Tyler Sorensen

Intel Apple NVIDIA AMD All

0.1%

1%

5%

A
ve

ra
ge

W
ea

k
B

eh
av

io
r

P
er

ce
nt

ag
e

MP

LB

SB

S

R

2+2W

Figure 6: Data showing the average rate of weak behaviors
across vendors when running litmus tests using WebGPU.

nothing; if a device revealed weak behaviors on one litmus test, it

revealed weak behaviors on all of them. In contrast, on a device

implementing x86’s TSO MCS, we would expect to only see store

buffering behaviors. However, unlike x86, GPU devices do not pro-

vide low-level details, such as the hardware-level MCS, thus it was

not clear what types of weak behaviors we would observe. These

results show that many GPUs implement very relaxed memory

models, in contrast to stronger CPU architectures like x86 TSO.

Intel devices tended to have the lowest rate of weak behaviors,

with just over half of them (15/26) revealing weak behaviors on

each test. The median rate of weak behaviors on Intel devices was

even lower than their average, around .02% for each test. No Intel

device showed a rate of weak behaviors above 1% on any test.

NVIDIA devices revealed weak behaviors at a relatively low rate.

Our results include results from NVIDIA’s Kepler (2012), Maxwell

(2014), Pascal (2016), Turing (2018), and Ampere (2020) architec-

tures, with a majority being the more recent Ampere. Older devices

generally showed fewer weak behaviors, with the minimum on

each of the six tests being Kepler and Maxwell devices. However,

one outlier is that the maximum rate of SB behaviors (.73%) was

seen on a Kepler device. Interestingly, that device was also the only

device not to observe any weak behaviors on S, LB, and 2+2W.

The only other device not to reveal weak behaviors on a test was a

Quadro K620 with a Maxwell architecture, onMP, R, and SB.
Apple devices were consistently weak, revealing weak behaviors

on every device and test, generally at a higher rate on all tests than

NVIDIA devices but with less variation than AMD devices. Apple

GPUs have only been recently built into non-mobile devices, so

these results represent the first comprehensive evaluation of the

weak behaviors on Apple GPUs. We don’t have the specific name of

every Apple device, but we were able to collect enough information

to show we had results from Apple M1 (basic, Pro, Max) and Apple

M2 (basic, Pro) devices.

AMD devices were also very weak, with 100% of devices showing

weak behaviors on every test. The clear highest average rate occurs

on the SB litmus test on AMDGPUs. Most of the AMD devices show

a high rate of weak behaviors on SB, approaching 10% and higher,

but devices with AMD’s Graphics Core Next 5 micro-architecture

all showed rates under 1%. This means that even from a single

vendor, the behaviors of different architectures can vary widely

Table 2: Data showing the average rate of weak behaviors
across vendors when running litmus tests using Vulkan.

Litmus Test

Vendor Device MP LB SB S R 2+2W

Qualcomm

Adreno 610 0% 0% 0% 0% 0% 0%

Adreno 640 0% 2.04% 1.45% 1.65% 0% 2.21%

Adreno 642L 0.04% 5.75% 5.81% 3.81% 0% 6.38%

Adreno 660 0.12% 8.5% 14.37% 5.69% 0% 11.5%

Arm

Mali-G71 0.04% 0% 0% 0% 0% 0%

Mali-G78 1.56% 0% 0% 0% 0% 0%

Imagination PowerVR 0% 0% 0% 0% 0% 0%

GE8320

NVIDIA Tegra X1 0.01% 0.05% 0.02% 0.01% 0.01% 0.05%

and past results from one vendor cannot be counted on to predict

future behaviors.

4.2 Weak Behaviors in Vulkan
The data in Tab. 2 shows the percentage of weak behaviors in the

test environment that maximizes the rate at which they occur for

our Android devices. In contrast to our web GPUs, in the mobile

setting, weak behaviors were observed in every test on only one

device, the NVIDIA Tegra X1, but the rates on this device were

very low, beneath 0.1%. The most difficult test to observe in general

was R, which checks whether a store is reordered with a following

load on one thread. We did not observe any weak behaviors on

the Imagination GPU; because testing is fundamentally incomplete,

this could mean that the device implements a strong MCS, or that

our testing approach was not effective. Interestingly, ARM only

showed weak behaviors in theMP test.

We observe that, in general, the rates of weak behaviors increase

as devices become more powerful. This is especially apparent from

the four Qualcomm devices we test, as the rate of weak behaviors

increases from 0% on the Adreno 610 (which has 96 shading units,
analogous to NVIDIA’s CUDA cores) up to a maximum of 14.37%

in SB on the Adreno 660 (with 512 shading units). One intuitive

explanation for this might be that smaller GPUs lack the ability to

schedule as many threads at once, naturally reducing the rates of

weak behaviors despite architectures that might allow them. We

see a similar trend on the Arm GPUs, where the smaller Mali-G71

(32 shading units) showed a lower rate of weak behaviors than the

larger Mali-G78 (384 shading units).

5 INSIGHTS AND IMPACTS
We now set out to answer the three questions posed in Sec. 4 using

our data and characterization of weak behavior rates.

5.1 MCS Bugs
Our conformance testing campaigns discovered bugs on several

vendors’ devices when running under the Vulkan and WebGPU

frameworks.

(1) Arm: We observed coherency violations of theMP-CO lit-

mus test when using the Vulkan framework on two Arm

GPUs, a Mali-G71 and a Mali-G78. These bugs were reported

to and confirmed by Arm, leading to a compiler fix to insert a

GPUHarbor: Testing GPU Memory Consistency at Large (Experience Paper) ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

missing memory fence. Arm has also added regression tests

based on the pattern of the violation we reported.

(2) NVIDIA: We also observed violations of the MP-CO test

when run using the Vulkan framework on an NVIDIA Tegra

X1. Additionally, our WebGPU conformance test results re-

vealed violations of a different coherence test, RR, on an

NVIDIA Quadro P620 running on a Linux desktop (there-

fore using Vulkan as the native framework). The combined

report of the bug on the Tegra X1 and Quadro P620 helped

NVIDIA find and fix a bug in their Vulkan compiler. NVIDIA

also noted that this bug affected the Vulkan compiler in all

pre-Volta architecture GPUs.

(3) Apple: Our WebGPU conformance tests reveal coherence

violations in RR from eight other devices, all running on

Apple machines. Five of these devices were Intel GPUs, two

were NVIDIA GPUs, and one was an AMDGPU. MCMutants

observed the same issue on an Intel integrated device on a

MacBook and reported the issue to Apple [28]; the bug has

not been confirmed nor fixed. On Intel, it is likely that these

bugs are instances of the same issue, but our results are the

first time the bug has been observed on non-Intel GPUs.

We found all of the bugs by running conformance litmus tests

under tuned system stress. We choose the system stress using the

methodology described in prior work [28], i.e., by selecting a system

stress configuration effective at revealing weak behaviors in an

associated weak memory litmus test. For theMP-CO bugs on the

Arm and NVIDIA devices, we perform a correlation analysis to

empirically validate the methodology.

We run both theMP andMP-CO litmus tests in 150 randomly

generated system stress configurations on each of the Android

devices showing the bug, recording the rate of weak behaviors in

MP and the rate of buggy (i.e. non-coherent) behaviors in MP-CO.
Our results show that the Pearson Correlation Coefficient (PCC)

between the rate of weak and buggy behaviors is 0.732 on the Arm

Mali-G71, 0.759 on the Arm Mali-G78, and 0.832 on the NVIDIA

Tegra X1. Since these behaviors are recorded from 150 samples

(i.e. system stress configurations), we have 148 degrees of freedom,

and running a Student’s t-test leads to a p-value less than 10
−5
%

on each device. This shows that the PCC between weak behaviors

and bugs is certainly not due to random chance, further validating

that configurations tuned using weak behaviors are effective at

revealing bugs in conformance tests.

5.2 GPU Similarity
All of the data was collected by running the tests with pseudo-

randomly generated system stress configurations, but as mentioned

in Sec. 3.4 the generator is seeded with a known value. Thus, we

can compare how different GPUs behave under the same stress

parameters. To do this, each testing run is represented as a vector

of the non-sequential (i.e. where one thread runs entirely before

another one) behaviors of every test in each configuration. Ignoring

the sequential behaviors gives the data a degree of freedom, which

is necessary for calculating a valid similarity measure.

For our similarity metric, we choose cosine similarity, which
measures the cosine of the angle between two vectors and ranges

from -1 to 1.We chose cosine similarity because it is a relativemetric,

Table 3: Each row shows the cosine similarity statistics be-
tween all pairs of devices from that vendor. The last row
shows the similarity statistics across all pairs of devices.

Vendor Avg Median Min Max

Intel 0.870 0.891 0.683 0.985

Apple 0.903 0.913 0.699 0.993

NVIDIA 0.903 0.931 0.670 0.996

AMD 0.904 0.927 0.661 0.989

All 0.840 0.862 0.477 0.996

Table 4: Device clustering shows that choosing one device
from each vendor is not an optimal way to test applications
that utilize the MCS.

Cluster

Device A B C D E F

Intel 3 0 0 5 18 0

Apple 12 4 0 10 0 0

NVIDIA 1 0 19 8 2 1

AMD 13 1 0 1 0 0

not an absolute like Euclidean distance, meaning that devices that

show different absolute rates of behaviors, but at similar relativity,

are classified as more closely related.

Device Identification. Table 3 shows a summary of the similarity

between devices in our study. All similarities are positive, with

the minimum being 0.477 between an Intel and AMD device. This

is not surprising, since effective system stress is likely to reveal

weak behaviors on many devices. However, the average and median

similarities between devices from each vendor are higher than the

overall average and median, showing that in general devices from

the same vendor tend to have more similar MCS behaviors.

For Apple and NVIDIA, we confirmed that the maximum similar-

ity occurs between identical GPUs: two Apple M1 Max’s and two

NVIDIA GeForce RTX 3080s. For AMD, we observe a maximum

similarity of 0.989 between two devices, one of which is a Radeon

Pro 5500M (A) while the other device (B) did not report a model

and instead only indicated that it was from the same architectural

generation as A. However, we observed a high similarity (0.985) be-

tween A and another Radeon Pro 5500M (C), as well as a similarity

of 0.984 between B and C, so it seems likely that A, B, and C are all

the same device. We do a similar analysis with Intel to determine

that an unknown device is most likely an Intel Iris Xe Graphics.

While we are most interested in using this data to help choose

conformance test strategies, as shown next, we also note that GPU

MCS behavior data like this exposes a fingerprinting vulnerability,

despite the specification trying to hide specific device information

for security reasons.

Clustering Based Testing Strategies. K-means clustering attempts

to minimize the distortion, or the sum of squared distances between

vectors and a centroid. Applying k-means clustering to GPU MCS

behavior has implications for testing strategies; when developing

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Reese Levine, Mingun Cho, Devon McKee, AndrewQuinn, and Tyler Sorensen

Table 5: Analysis of three locking algorithms, Test-and-Set
(TAS), Test and Test-and-Set (TTAS), and Compare-and-Swap
(CAS), showing in how many test runs (out of 1000) we ob-
served failures of unfenced (UF) and fenced (F) lock imple-
mentations to protect a critical section. The total time to run
all tests on each device is also recorded.

TAS TTAS CAS

Device Time (min) UF F UF F UF F

Adreno 610 3.5 0 0 0 0 0 0

Mali-G78 67.9 18 0 11 0 7 0

cross-platform GPU applications that rely on shared memory opera-

tions, testing these applications on a number of devices can increase

confidence in the correctness of the implementation. A naive strat-

egy might be to choose one device from each major vendor, but our

results show that this is not necessarily an optimal strategy.

Table 4 shows the result of running k-means with six clusters

on the similarity data from Tab. 3. The “elbow-method” heuristic

showed that the rate of decrease in distortion leveled off at 6 clusters

on our data. The clustering data shows that devices from the same

vendor are generally placed into the same cluster, but there are

outliers in each case. The only NVIDIA Kepler device in our study

was dissimilar enough from other devices that it was placed in its

own cluster. Kepler is also the oldest NVIDIA architecture in our

study, showing that special testing attention might be needed when

supporting older devices in cross-platform GPU frameworks.

When selecting which devices to test a shared memory GPU

application on, the strategy should be to first choose a number

of clusters based on the rate of decrease in distortion, and then

select at least one device from each cluster. Using our data, this

might mean selecting an AMD device from A, Apple devices from
clusters B and D, NVIDIA devices from clusters C and F (the only

device in that cluster), and an Intel device from cluster E. Despite
choosing more Apple and NVIDIA devices than AMD and Intel,

the similarity data ensures the tests maximally cover devices with

different behavior profiles.

5.3 Implementing Synchronization Algorithms
We now discuss a use case of how the diversity of weak memory

profiles across these different GPUs can impact software develop-

ment. Locking algorithms are implemented using atomic operations

to synchronize access to critical sections. Implementation of locks

depends on careful placement of memory fences to avoid compilers

and hardware from reordering memory accesses, which can cause

critical section failures. In this section, we implemented three com-

mon spin-locks: test-and-set (TAS), test-and-test-and-set (TTAS),

and compare-and-swap (CAS). Each of these locks specifically needs

to disallow MP behaviors using acquire/release memory fences.

However, our results in Sec. 4 show that on some mobile devices

MPweak behaviors never occur, meaning that if the locks are tested

on these devices, they may run correctly despite being incorrectly

implemented (according to the specification).

To investigate this, we tested our three locks on two Android

devices, an Arm Mali-G78 and a Qualcomm Adreno 610. The locks

were implemented bothwith andwithout appropriate acquire/release

memory fences. In these tests, threads from different workgroups

acquire the lock 10k times and increment a non-atomic memory

location in the critical section. We ran this test for 1k iterations and

recorded the number of critical section violations we observed for

each device and each lock.

On the Arm Mali-G78, a larger GPU which exhibits a relatively

high rate of MP behaviors, we observed critical section failures in

unfenced versions of all three locks; in every failure case except one

the value was 189,999 instead of 190,000, meaning that just one of

the increments was not reflected. In the remaining failure case, the

value was 189,998. On the Qualcomm Adreno 610, which exhibited

no MP behaviors in our study, we saw no failures. Both devices

exhibited no failures when locks were run with correct fences.

Therefore, when writing applications that require synchroniza-

tion, care must be taken to ensure the application is tested on

devices where incorrect implementations will lead to failures, high-

lighting the importance of collecting and characterizing MCS be-

havior data.

6 LESSONS LEARNED
In this section we discuss important lessons learned while develop-

ing and running our study.

Ease of Use. Technical studies of low-level details like memory

consistency specifications [3, 25, 46] have been run by expert practi-

tioners and involve installing special software (e.g. OpenCL/CUDA

drivers) and running experiments from command line interfaces.

However, experiments that solicit non-technical users require ac-

cessible and frictionless interfaces in order to collect many results.

For example, we initially had users download their results and email

them to us directly, but found that many users would not take this

seemingly small step. Thus, we implemented a way to submit results

by simply clicking a button. This required substantial engineering

effort, both to set up a client/server infrastructure and to distribute

the tools in a non-technical way (e.g. through web browsers/app

stores). Once implemented this workflow also had the benefit of

making our experiments standardized; instead of relying on users

to configure their system and choose the right options, all of this

was baked in so that users only had to click a few buttons to run

and submit results.

Testing Time. Previous studies ran tests for hours or days, but it

is unrealistic for volunteer users to run experiments that long on

their devices. Therefore, we explored the trade-off space between

experiment time and behavior coverage. Through trial and error,

we determined parameters that allowed us to collect high-quality,

standardized data in a short time frame, utilizing testing techniques

from prior work that increased testing speed and provided statistical

measures of reproducibility [28].

Enabling New Research Questions. Important research questions

on memory consistency, including the three from Sec. 4, require

performing a large-scale study. For example, previous studies [25]

have attempted to create portable testing strategies, but could only

provide limited guidance on choosing representative sets of devices

to test on due to the small number of devices in their evaluation. On

the other hand, our data shows that GPUs from different vendors

GPUHarbor: Testing GPU Memory Consistency at Large (Experience Paper) ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

can behave similarly under stress, and thus portability may not

be vendor-specific. Therefore, increasing the scale of evaluation

through faster and more accessible testing should be an important

factor when developing new testing strategies for a diverse (and

ever growing) set of devices.

Extensibility. When we first designed our LitGen tool, it only

generated SPIR-V shaders. However, as we started focusing on

testing WebGPU’s MCS, LitGen’s neutral configuration language

(JSON) allowed us to easily write a backend generator for WGSL

shaders. Ensuring our tools are extensible means that they might

also be useful for researchers testing other areas of GPU specifica-

tions, e.g., floating point operation accuracy. In the same vein, our

initial app only targets Android devices running Vulkan, but as we

seek to expand the scope of our testing, we plan on developing an

app that will work on both Android and iOS devices.

7 FUTUREWORK
This work has spent significant engineering effort enabling the

testing of many different GPUs. However, given the difficulty of

cross-platform GPU programming, we were still unable to test

mobile Apple GPUs, which appear in some of the most widely

used mobile devices. Additionally, our web interface and Android

app contain distinct user interfaces and GPU setup code, causing

duplicate efforts and maintenance. In this section, we outline a path

forward, with Flutter as a fitting match for these goals.

Flutter [17] is an open-source software development kit devel-

oped by Google that provides deployment options to desktop plat-

forms (such as Windows, macOS, and Linux), mobile platforms

(Android, iOS), and even web deployment from a single frontend

codebase. With a unified codebase for the MCS testing front end,

development work can be focused on designing backend implemen-

tations specific to those platforms. Underlying Flutter is Dart [16], a

language also developed by Google for cross-platform app develop-

ment. For each supported platform, Flutter provides an interface to

backend code native to the specific platform. On the Android end,

GPU access is provided through Dart’s foreign function interface

(FFI) library to load a dynamically linked C library, compiled against

the version of Vulkan provided by Android’s Native Development

Kit (NDK) [14]. The Dart FFI library can be used similarly on all

supported platforms except for the web, for which GPU access will

involve calls to JavaScript code utilizing WebGPU.

Vulkan, while well-supported on Windows, Linux, and Android

devices, is not officially supported by macOS and iOS clients. For

these platforms, there are two possible options. For a more native-

friendly option, Vulkan backend code could be instead rewritten to

depend on Apple’s Metal [6] API, with SPIR-V shaders transpiled to

the Metal Shading Language (MSL) using SPIRV-Cross [24], a tool

developed by Khronos Group. However, to reduce development

time and duplicate code across multiple platforms, Vulkan backend

code can be passed through MoltenVK [23], a Khronos Group im-

plementation of a large subset of Vulkan 1.2 on top of Metal. This

provides a portability layer with which to run Vulkan applications

on iOS and macOS platforms.

We also plan on integrating our new tools with the current server

backend, allowing us to collect data from devices we do not have

physical access to using a simple API interface. With a single source

for interface design, GPU setup, and data collection, it is expected

that future work will be able to deploy MCS testing at a wider scale

and collect results from GPU hardware previously inaccessible in

related work.

8 RELATEDWORK
Testing MCSs. Work on testing MCS dates back to tools like

ARCHTEST [49] and TSOTool [18], which each generated test

programs containing sequences of loads and stores and then looked

for violations of sequential consistency. With the introduction of

formal MCSs, researchers developed tools like litmus [3], which

runs litmus tests generated from formal models directly on ISAs

(namely x86, Power, and Arm) and includes stress parameters that

make weak behaviors more likely.

Techniques for CPUMCS testing have been extended to GPUs [1,

25]. Weak behaviors on GPUs are notoriously difficult to reveal,

leading to work that statistically analyzed tuning techniques and

reproducibility of results when running litmus tests on GPUs [25].

To better evaluate the efficacy of test environments and provide

confidence in MCS implementations, [28] introduced a methodol-

ogy based on black-box mutation testing [8], finding bugs in several

WebGPU MCS implementations.

Previous studies have been limited in the number of devices they

were able to test. In contrast, this study introduces tooling that

allows us to conduct the largest ever GPU MCS testing campaign,

running tests across 2 frameworks, 7 vendors, and 106 devices.

Testing at Scale. Other studies have tested large numbers of de-

vices, searching for bugs in compilers and hardware. In [11], 17

GPU and driver combinations were tested for compiler bugs. Our

approach, distributing the GPU MCS testing experiment using a

web interface, is a form of volunteer computing, where the general
public volunteers their computing resources for research studies.

Volunteer computing has been used for many compute-intensive

tasks, including searching for extraterrestrial life [5], training neural

networks [10], sequencing genomes [40], and climate modeling [9].

9 CONCLUSION
We introduce GPUHarbor, a tool suite with a web interface and

Android app for accessible cross-platform GPU MCS testing. We

utilize GPUHarbor to perform a large-scale study on weak behav-

iors in 106 GPUs from seven vendors and find two bugs in GPUs

running on mobile devices. Our results show the importance of

scaling previous MCS testing strategies in order to characterize the

behavior of different devices, perform conformance testing, and

design application testing strategies.

ACKNOWLEDGMENTS
We thank the reviewers whose feedback helped strengthen the

paper and motivated the lessons learned section. We thank Jan-

Harald Frederiksen from Arm for working with us to confirm the

bug on Arm’s devices, and Jeff Bolz from NVIDIA for finding and

confirming the bug in NVIDIA’s compiler. We thank David Neto

and Alan Baker from Google for feedback on the description of

the WebGPU memory model and our results analysis. We thank

everyone who submitted anonymous data for this study, including

friends and family. This work was supported by a gift from Google.

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Reese Levine, Mingun Cho, Devon McKee, AndrewQuinn, and Tyler Sorensen

REFERENCES
[1] Jade Alglave, Mark Batty, Alastair F. Donaldson, Ganesh Gopalakrishnan, Jeroen

Ketema, Daniel Poetzl, Tyler Sorensen, and John Wickerson. 2015. GPU con-

currency: Weak behaviours and programming assumptions. In International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS) (ASPLOS ’15). Association for Computing Machinery, 577–591.

https://doi.org/10.1145/2694344.2694391

[2] Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. 2010. Fences in

weak memory models. In Computer Aided Verification, Tayssir Touili, Byron Cook,
and Paul Jackson (Eds.). Springer Berlin Heidelberg, 258–272.

[3] Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. 2011. Litmus:

Running tests against hardware. In Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), Vol. 6605. 41–44. https://doi.org/10.1007/978-3-

642-19835-9_5

[4] Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herding cats:

Modelling, simulation, testing, and data mining for weak memory. Trans.
Program. Lang. Syst. (TOPLAS) 36, 2, Article 7 (July 2014), 74 pages. https:

//doi.org/10.1145/2627752

[5] David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan Werthimer.

2002. SETI@home: An experiment in public-resource computing. Commun. ACM
45, 11 (nov 2002), 56–61. https://doi.org/10.1145/581571.581573

[6] Apple. 2023. Metal. https://developer.apple.com/documentation/metal/. Retrieved

February 2023.

[7] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. 2011.

Mathematizing C++ concurrency. In Symposium on Principles of Programming
Languages (POPL) (POPL ’11). Association for Computing Machinery, 55–66.

https://doi.org/10.1145/1926385.1926394

[8] Timothy A. Budd and Ajei S. Gopal. 1985. Program testing by specification

mutation. Computer Languages 10, 1 (1985), 63–73. https://doi.org/10.1016/0096-

0551(85)90011-6

[9] C. Christensen, T. Aina, and D. Stainforth. 2005. The challenge of volunteer com-

putingwith lengthy climatemodel simulations. In First International Conference on
e-Science and Grid Computing (e-Science’05). 8 pp.–15. https://doi.org/10.1109/E-

SCIENCE.2005.76

[10] Travis Desell. 2017. Large scale evolution of convolutional neural networks using

volunteer computing. In Proceedings of the Genetic and Evolutionary Computation
Conference Companion (GECCO ’17). Association for Computing Machinery,

127–128. https://doi.org/10.1145/3067695.3076002

[11] Alastair F. Donaldson, Hugues Evrard, Andrei Lascu, and Paul Thomson. 2017.

Automated testing of graphics shader compilers. Proc. ACM Program. Lang. 1,
OOPSLA, Article 93 (oct 2017), 29 pages. https://doi.org/10.1145/3133917

[12] Wu-chun Feng and Shucai Xiao. 2010. To GPU synchronize or not GPU syn-

chronize?. In 2010 IEEE International Symposium on Circuits and Systems (ISCAS).
3801–3804. https://doi.org/10.1109/ISCAS.2010.5537722

[13] Esther Francis. 2014. Autonomous cars: no longer just science fiction. (2014).

[14] Google. 2023. Android NDK. https://developer.android.com/ndk.

[15] Google. 2023. Clspv. https://github.com/google/clspv.

[16] Google. 2023. Dart. https://dart.dev/.

[17] Google. 2023. Flutter. https://flutter.dev/.

[18] S. Hangal, D. Vahia, C. Manovit, J.-Y.J. Lu, and S. Narayanan. 2004. TSOtool: A

program for verifying memory systems using the memory consistency model. In

International Symposium on Computer Architecture (ISCA), 2004. 114–123. https:

//doi.org/10.1109/ISCA.2004.1310768

[19] Jeff Bolz. 2022. Vulkan memory model. https://www.khronos.org/registry/

vulkan/specs/1.1-extensions/html/vkspec.html#memory-model.

[20] Khronos Group. 2021. SPIR-V specification version 1.6, revision 1. https://www.

khronos.org/registry/SPIR-V/specs/unified1/SPIRV.html.

[21] Khronos Group. 2022. The OpenCL C Specification. https://registry.khronos.org/

OpenCL/specs/3.0-unified/html/OpenCL_C.html.

[22] Khronos Group. 2022. Vulkan 1.3 Core API.

[23] Khronos Group. 2023. MoltenVK. https://github.com/KhronosGroup/MoltenVK.

[24] Khronos Group. 2023. SPIRV-Cross. https://github.com/KhronosGroup/SPIRV-

Cross.

[25] Jake Kirkham, Tyler Sorensen, Esin Tureci, and Margaret Martonosi. 2020. Foun-

dations of empirical memory consistency testing. Proc. ACM Program. Lang. 4,
OOPSLA, Article 226 (Nov. 2020), 29 pages. https://doi.org/10.1145/3428294

[26] Leslie Lamport. 1978. Time, clocks, and the ordering of events in a distributed

system. Commun. ACM 21, 7 (July 1978), 558–565. https://doi.org/10.1145/

359545.359563

[27] Reese Levine, Mingun Cho, Devon McKee, Andrew Quinn, and Tyler Sorensen.

2023. GPUHarbor: Testing GPU Memory Consistency At Large (Experience Paper):
Artifact. https://doi.org/10.5281/zenodo.7922486

[28] Reese Levine, Tianhao Guo, Mingun Cho, Alan Baker, Raph Levien, David Neto,

AndrewQuinn, and Tyler Sorensen. 2023. MCmutants: Evaluating and improving

testing for memory consistency specifications. In Proceedings of the 28th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 2 (ASPLOS 2023). Association for Computing

Machinery, 473–488. https://doi.org/10.1145/3575693.3575750

[29] Sela Mador-Haim, Rajeev Alur, and Milo M K. Martin. 2010. Generating litmus

tests for contrasting memory consistency models. In Proceedings of the 22nd
International Conference on Computer Aided Verification (CAV’10). Springer-Verlag,
273–287. https://doi.org/10.1007/978-3-642-14295-6_26

[30] Yatin A. Manerkar, Daniel Lustig, Margaret Martonosi, andMichael Pellauer. 2017.

RTLcheck: Verifying the memory consistency of RTL designs. In Proceedings of
the 50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-
50 ’17). Association for Computing Machinery, 463–476. https://doi.org/10.1145/

3123939.3124536

[31] Yatin A. Manerkar, Caroline Trippel, Daniel Lustig, Michael Pellauer, and Mar-

garet Martonosi. 2016. Counterexamples and proof loophole for the C/C++ to

POWER and ARMv7 trailing-sync compiler mappings. arXiv:1611.01507 2016.

[32] Duane Merrill and Michael Garland. 2016. Single-pass parallel prefix scan with

decoupled lookback. https://research.nvidia.com/publication/2016-03_single-

pass-parallel-prefix-scan-decoupled-look-back

[33] Microsoft. 2020. Programming guide for Direct3D 11. https://docs.microsoft.

com/en-us/windows/win32/direct3d11/dx-graphics-overviews.

[34] Vijay Nagarajan, Daniel J. Sorin, Mark D. Hill, David A.Wood, and Natalie Enright

Jerger. 2020. A primer on memory consistency and cache coherence (2nd ed.).

Morgan & Claypool Publishers.

[35] Feng Niu, Benjamin Recht, Christopher Re, and Stephen J. Wright. 2011. HOG-

WILD! A lock-free approach to parallelizing stochastic gradient descent. In Pro-
ceedings of the 24th International Conference on Neural Information Processing
Systems (NIPS’11). Curran Associates Inc., 693–701.

[36] NVIDIA. 2023. CUDA C++ programming guide. https://docs.nvidia.com/cuda/

cuda-c-programming-guide/.

[37] Özgün Özerk, Can Elgezen, Ahmet Can Mert, Erdinç Öztürk, and Erkay Savaş.

2022. Efficient number theoretic transform implementation on GPU for ho-

momorphic encryption. J. Supercomput. 78, 2 (feb 2022), 2840–2872. https:

//doi.org/10.1007/s11227-021-03980-5

[38] Mohit Pandey, Michael Fernandez, Francesco Gentile, Olexandr Isayev, Alexander

Tropsha, Abraham C Stern, and Artem Cherkasov. 2022. The transformational

role of GPU computing and deep learning in drug discovery. Nature Machine
Intelligence 4, 3 (2022), 211–221.

[39] S. K. Park and K. W. Miller. 1988. Random number generators: Good ones are

hard to find. Commun. ACM 31, 10 (oct 1988), 1192–1201. https://doi.org/10.

1145/63039.63042

[40] S. Pellicer, N. Ahmed, Yi Pan, and Yao Zheng. 2005. Gene sequence alignment on a

public computing platform. In 2005 International Conference on Parallel Processing
Workshops (ICPPW’05). 95–102. https://doi.org/10.1109/ICPPW.2005.35

[41] Lakshminarayanan Renganarayana, Vijayalakshmi Srinivasan, Ravi Nair, and

Daniel Prener. 2012. Programmingwith relaxed synchronization. In Proceedings of
the 2012 ACM Workshop on Relaxing Synchronization for Multicore and Manycore
Scalability (RACES ’12). Association for Computing Machinery, 41–50. https:

//doi.org/10.1145/2414729.2414737

[42] Albert Reuther, Peter Michaleas, Michael Jones, Vijay Gadepally, Siddharth Samsi,

and Jeremy Kepner. 2019. Survey and benchmarking of machine learning accel-

erators. In 2019 IEEE High Performance Extreme Computing Conference (HPEC).
1–9. https://doi.org/10.1109/HPEC.2019.8916327

[43] Mehrzad Samadi, Janghaeng Lee, D. Anoushe Jamshidi, Amir Hormati, and

Scott Mahlke. 2013. SAGE: Self-tuning approximation for graphics engines. In

Proceedings of the 46th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO-46). Association for Computing Machinery, 13–24. https:

//doi.org/10.1145/2540708.2540711

[44] Susmit Sarkar, Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Tom Ridge,

Thomas Braibant, Magnus O. Myreen, and Jade Alglave. 2009. The semantics

of x86-CC multiprocessor machine code. In Proceedings of the 36th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL
’09). Association for Computing Machinery, 379–391. https://doi.org/10.1145/

1480881.1480929

[45] Dennis Shasha and Marc Snir. 1988. Efficient and correct execution of parallel

programs that share memory. ACM Trans. Program. Lang. Syst. 10, 2 (April 1988),
282–312. https://doi.org/10.1145/42190.42277

[46] Tyler Sorensen and Alastair F. Donaldson. 2016. Exposing errors related to weak

memory in GPU applications. In Proceedings of the 37th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI ’16). Association for

Computing Machinery, 100–113. https://doi.org/10.1145/2908080.2908114

[47] Tyler Sorensen and Alastair F. Donaldson. 2016. The hitchhiker’s guide to cross-

platform OpenCL application development. In Proceedings of the 4th International
Workshop on OpenCL (IWOCL ’16). Association for Computing Machinery, Article

2, 12 pages. https://doi.org/10.1145/2909437.2909440

[48] JohnWickerson, Mark Batty, Tyler Sorensen, and George A. Constantinides. 2017.

Automatically comparing memory consistency models. In Proceedings of the 44th
ACM SIGPLAN Symposium on Principles of Programming Languages (POPL ’17).
Association for Computing Machinery, 190–204. https://doi.org/10.1145/3009837.

3009838

[49] William W. Collier. 1994. ARCHTEST. http://www.mpdiag.com/archtest.html.

https://doi.org/10.1145/2694344.2694391
https://doi.org/10.1007/978-3-642-19835-9_5
https://doi.org/10.1007/978-3-642-19835-9_5
https://doi.org/10.1145/2627752
https://doi.org/10.1145/2627752
https://doi.org/10.1145/581571.581573
https://developer.apple.com/documentation/metal/
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1016/0096-0551(85)90011-6
https://doi.org/10.1016/0096-0551(85)90011-6
https://doi.org/10.1109/E-SCIENCE.2005.76
https://doi.org/10.1109/E-SCIENCE.2005.76
https://doi.org/10.1145/3067695.3076002
https://doi.org/10.1145/3133917
https://doi.org/10.1109/ISCAS.2010.5537722
https://developer.android.com/ndk
https://github.com/google/clspv
https://dart.dev/
https://flutter.dev/
https://doi.org/10.1109/ISCA.2004.1310768
https://doi.org/10.1109/ISCA.2004.1310768
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#memory-model
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#memory-model
https://www.khronos.org/registry/SPIR-V/specs/unified1/SPIRV.html
https://www.khronos.org/registry/SPIR-V/specs/unified1/SPIRV.html
https://registry.khronos.org/OpenCL/specs/3.0-unified/html/OpenCL_C.html
https://registry.khronos.org/OpenCL/specs/3.0-unified/html/OpenCL_C.html
https://github.com/KhronosGroup/MoltenVK
https://github.com/KhronosGroup/SPIRV-Cross
https://github.com/KhronosGroup/SPIRV-Cross
https://doi.org/10.1145/3428294
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://doi.org/10.5281/zenodo.7922486
https://doi.org/10.1145/3575693.3575750
https://doi.org/10.1007/978-3-642-14295-6_26
https://doi.org/10.1145/3123939.3124536
https://doi.org/10.1145/3123939.3124536
https://arxiv.org/abs/1611.01507
https://research.nvidia.com/publication/2016-03_single-pass-parallel-prefix-scan-decoupled-look-back
https://research.nvidia.com/publication/2016-03_single-pass-parallel-prefix-scan-decoupled-look-back
https://docs.microsoft.com/en-us/windows/win32/direct3d11/dx-graphics-overviews
https://docs.microsoft.com/en-us/windows/win32/direct3d11/dx-graphics-overviews
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://doi.org/10.1007/s11227-021-03980-5
https://doi.org/10.1007/s11227-021-03980-5
https://doi.org/10.1145/63039.63042
https://doi.org/10.1145/63039.63042
https://doi.org/10.1109/ICPPW.2005.35
https://doi.org/10.1145/2414729.2414737
https://doi.org/10.1145/2414729.2414737
https://doi.org/10.1109/HPEC.2019.8916327
https://doi.org/10.1145/2540708.2540711
https://doi.org/10.1145/2540708.2540711
https://doi.org/10.1145/1480881.1480929
https://doi.org/10.1145/1480881.1480929
https://doi.org/10.1145/42190.42277
https://doi.org/10.1145/2908080.2908114
https://doi.org/10.1145/2909437.2909440
https://doi.org/10.1145/3009837.3009838
https://doi.org/10.1145/3009837.3009838
http://www.mpdiag.com/archtest.html

GPUHarbor: Testing GPU Memory Consistency at Large (Experience Paper) ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

[50] World Wide Web Consortium (W3C). 2022. WebGPU shading language: Editor’s

draft. https://gpuweb.github.io/gpuweb/wgsl/.

[51] World Wide Web Consortium (W3C). 2023. WebGPU: W3C working draft. https:

//www.w3.org/TR/webgpu/.

[52] WorldWideWeb Consortium (W3C). 2023. WebGPU:W3Cworking draft: Privacy

considerations. https://www.w3.org/TR/webgpu/#privacy-considerations.

Received 2023-02-16; accepted 2023-05-03

https://gpuweb.github.io/gpuweb/wgsl/
https://www.w3.org/TR/webgpu/
https://www.w3.org/TR/webgpu/
https://www.w3.org/TR/webgpu/##privacy-considerations

	Abstract
	1 Introduction
	1.1 GPUHarbor

	2 Background
	2.1 Memory Consistency Specifications
	2.2 Litmus Tests
	2.3 GPU Programming

	3 System Overview
	3.1 Litmus Test Selection
	3.2 Litmus Test Generation
	3.3 GPUHarbor Design
	3.4 Data Collection

	4 Initial Results: Weak Behavior Characterization
	4.1 Weak Behaviors in WebGPU
	4.2 Weak Behaviors in Vulkan

	5 Insights and Impacts
	5.1 MCS Bugs
	5.2 GPU Similarity
	5.3 Implementing Synchronization Algorithms

	6 Lessons Learned
	7 Future Work
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

